Decentralized Autonomous Architecture for
Resilient Cyber-Physical Production Systems

Laurin Prenzel
Technical University of Munich, Germany
Munich, Germany
laurin.prenzel @tum.de

Abstract—Real-time decision-making is a key element in the
transition from Reconfigurable Manufacturing Systems to Au-
tonomous Manufacturing Systems. In Cyber-Physical Production
Systems (CPPS) and Cloud Manufacturing, most decision-making
algorithms are either centralized, creating vulnerabilities to fail-
ures, or decentralized, struggling to reach the performance of the
centralized counterparts. In this paper, we combine the perfor-
mance of centralized optimization algorithms with the resilience
of a decentralized consensus. We propose a novel autonomous
system architecture for CPPS featuring an automatic production
plan generation, a functional validation, and a two-stage consensus
algorithm, combining a majority vote on safety and optimality, and
a unanimous vote on feasibility and authenticity. The architecture
is implemented in a simulation framework. In a case study, we
exhibit the timing behavior of the configuration procedure and
subsequent reconfiguration following a device failure, showing the
feasibility of a consensus-based decision-making process.

Index Terms—Autonomy, Decision-Making, Resilience, Consen-
sus, Manufacturing Systems

I. INTRODUCTION

Autonomy is a desirable quality in many types of systems. In
the automotive sector, autonomy saves cost and time, and pre-
vents fatal accidents. In a more general sense, autonomous sys-
tems are able to “learn, evolve, and permanently change their
functional capabilities as a result of the input of operational
or contextual information” [1]. In Cyber-Physical Production
Systems (CPPS), this ability to evolve and adapt has been
anticipated in the works on self-x production (self-evolvable,
self-reconfigurable, self-diagnosing, ---) [2]. In Cloud Manu-
facturing, on the other hand, a centralized scheduling authority
dynamically pairs users and providers in a service-oriented
architecture on a higher abstraction level than CPPS [3], [4].

As identified by [5], the necessary real-time decision-making
mechanisms with respect to production planning in manufac-
turing systems are difficult. Nevertheless, real-time adaptability,
especially when facing failures or disruptions, is critical for any
autonomous manufacturing system [6], [7]. As a result, most
current approaches either focus on the optimization problem,
using algorithms such as Genetic Algorithms [8], or focus
on dynamic real-time production planning using multi-agent
systems [9]. While centralized approaches are able to solve
arbitrarily complex optimization problems, the necessary or-
chestrators represent single points of failure. Furthermore, with
cloud computing and manufacturing, a production plan may be
generated by potentially untrusted devices. On the other hand,
fully-decentralized approaches, such as multi-agent systems,
struggle to find the optimal production plan. This paper focuses

The authors acknowledge the financial support by the Federal Ministry of
Education and Research of Germany (BMBF) in the framework of ReMiX
(project number 011S18063B). With the support of the Technische Universitit
Miinchen — Institute for Advanced Study, funded by the German Excellence
Initiative and the European Union Seventh Framework Programme under grant
agreement n° 291763.

Sebastian Steinhorst
Technical University of Munich, Germany
Munich, Germany
sebastian.steinhorst@tum.de

Control Decision-Making
Automatic
Process > Production Plan
Control / \ Generation
Device Functional
Configuration VeElEen
Cleanup @

Fig. 1. Lifecycle of the autonomous system architecture, separated by decision
making tasks and control tasks.

on the problem of how centralized optimization algorithms can
be used in a resilient and decentralized architecture for the
autonomous generation and application of production plans. In
contrast to Cloud Manufacturing, we anticipate a production
plan on a lower abstraction layer in which safety- and timing
related properties must be guaranteed.

Therefore, we propose a novel decentralized system archi-
tecture for CPPS, combining an optimization algorithm with a
decentralized validation and consensus framework. The phases
of the lifecycle are depicted in Figure 1. The production plan,
which details the mapping of devices and tasks, is generated au-
tomatically. We apply a functional validation of the plan and a
two-stage consensus algorithm to provide autonomy, resilience,
and real-time decision-making capabilities to a decentralized
architecture. The architecture is implemented in a custom sim-
ulation framework that enables a detailed, quantitative timing
analysis and provides further opportunities for research in opti-
mization, decentralized decision-making, and validation. A case
study exhibits the configuration and reconfiguration behavior
in response to a device failure, showing the feasibility of our
architecture and the two-stage consensus. The contributions of
this paper are:

« We propose a novel system architecture for CPPS in which
we define an autonomous system operation featuring an
automatic production plan generation, functional valida-
tion, and a custom consensus algorithm.

« Specifically, we develop a two-stage consensus algorithm
with a majority-based check on optimality and safety, and
a unanimous consensus on authenticity and feasibility.

e We present a flexible simulation framework allowing a
detailed timing analysis, and we implement a case study
exhibiting the timing behavior of a configuration and re-
configuration cycle following a device failure (Section III).

Section IV expands on the interfaces of this architecture
with the existing literature. Section V points out future research
directions.



Cloud
El

Mesh Network

Fig. 2. Hardware architecture featuring three types of heterogeneous devices.
Devices with additional computational resources can participate in the valida-
tion, whereas the production plan generation is outsourced to the cloud.

II. METHODS
We propose a novel system architecture for CPPS featuring
three distinct phases:

1) Automatic Production Plan Generation: We automat-
ically generate the production plan based on a system
description and formalized specifications.

2) Production Plan Validation: The timing, safety, and
functional correctness of the generated production plan are
validated.

3) Decentralized Two-Stage Consensus: The decision-
making process is built on a two-stage consensus algo-
rithm, featuring a majority agreement on the safety and
optimality and a unanimous agreement of all executing
devices on the feasibility and authenticity of the plan.

The hardware design of the architecture is visualized in
Figure 2. We consider a mesh network of heterogeneous devices
with varying functionalities and computational capabilities. The
generation of the production plans is outsourced to cloud
devices, whereas the functional validation can be performed
on the computationally stronger devices in the mesh network
as well.

A. Automatic Production Plan Generation

The automatic production plan generation is performed by
an optimization algorithm. The inputs to the optimization are
a formalized system description and one or multiple product
specifications. The goal of the optimization is to find a pro-
duction plan that uses the devices in the system description to
fulfill (ideally) all product specifications. This problem can be
formalized as a version of the Job Shop Scheduling problem,
to which a great number of solutions already exists [10]. In
our system, we use a greedy algorithm to find a suitable plan,
although different algorithms can be plugged in.

To enable not just configuration but reconfiguration, a proce-
dure similar to the one proposed by [11] can be used, in that the
production plan generation can be coupled with the calculation
of feasible migration routes. These migration routes handle
leftover workpieces and lead to a stateful reconfiguration,
in contrast to resetting the system to an initial state before
applying the new production plan.

B. Production Plan Validation

The new proposed production plan must be validated. Given
that it may be generated remotely, this plan is not immediately

trustworthy. Thus, the validation can be used to generate this
trust [12].

The validation may encompass the verification of various
timing- and safety-related properties. Since the inputs of the
generation (system description, specifications) are openly avail-
able, they can be used in the validation procedure as well,
leading to a more meaningful validation. Additional complexity
is introduced by considering a stateful reconfiguration, in which
the system state is (partially) preserved during a modification
of the production plan. Depending on the expressiveness of
the system description and specifications, a formal verification
may be feasible, e.g. to verify safety-critical time constraints.
The validation can be performed in a distributed manner, with
devices validating a hierarchical subcomponent of the overall
production plan.

C. Decentralized Two-Stage Consensus

The two-stage consensus starts when a new production plan
is proposed. The first stage synchronizes the results of the
functional validation between the involved devices. During this
stage, unsafe or functionally incorrect plans are filtered out,
and a new plan may be selected based on its optimality. The
second stage empowers all devices affected by the new plan to
veto the change.

1) Majority Consensus: The first consensus uses majority
voting to select the most suitable new plan after performing
an in-depth functional validation, as detailed in the previous
subsection. Given the computational complexity of this vali-
dation, this consensus is formed between the computationally
stronger devices. A majority vote is chosen over a unanimous
vote, since the functional validation leads to the same result on
all devices.

2) Unanimous Consensus: The second consensus requires
all affected devices to unanimously agree to this new plan.
Every device must perform a quick feasibility analysis and
verify the authenticity. Only if every device is able to fulfill
this new production plan, it can be applied to all devices.

In case a consensus can not be formed in the second stage,
the production plan may be changed incrementally to exclude
problematic devices. Thus, a malicious device in the second
stage would not be able to block the consensus indefinitely.

D. Simulation Framework

The architecture is implemented in a custom discrete event
simulation using the Python library simpy [13]. We can
simulate arbitrary mesh networks, which are defined in a YAML
file and can be visualized in a graphical user interface. The
optimization is currently performed using a greedy algorithm
on a graph representation of the system. The simulation may
be executed in real-time or simulation time, and can automat-
ically output the timestamped interactions between all system
components (see for example Figure 4).

III. CASE STUDY

To highlight the features of the simulation and to demonstrate
the feasibility of the architecture, a case study is implemented.
Figure 3a depicts a conveyor belt system with an additional
gripper robot that may serve as a backup to reroute workpieces
in a factory. An abstract system view is visualized in Figure 3b,
detailing the specific functions of the stations. Each station
(1-6) has a distinct function, where station 2 and 5 are
identical. Station 7 is the robot, which has no specific function



Cloud

Mesh Network

(a) Example System

(b) Abstract Depiction

Fig. 3. Example system of a flexible manufacturing system with con-
veyor belts and a backup robot. A workpiece must follow the specification
A-B-C-D-B-E. Functionality B is redundant in stations 2 and 5, every other
function is only available once.

apart from transportation. The specification defines that every
workpiece must pass all functions in the order A-B—C-D-B-E.
Every station features a device, and there are four additional
gateway devices (101 - 104) with additional computational
power and no functional capabilities, and two cloud devices
(201 - 202). In this case study, three contributions will be
illustrated:

System Configuration: The system is able to autonomously
generate and apply a production plan.

System Reconfiguration: When facing a failure, the system
can reconfigure itself to circumvent the failed device and
continue operation.

Decentralized Consensus: Using the two-stage consensus
algorithm, the devices can decentrally agree on the course
of action.

The simulation architecture uses a distributed ledger to share
the production plans and synchronize the system state. The
system starts with all devices available, configures itself, and
starts producing. At a predefined point in time, Device 2
fails, causing a reconfiguration. Because Device 5 is still
available, the system remains functional and continues pro-
duction at a slower rate by using Device 5 twice and
involving the robot arm. To better visualize the timing behavior,
the durations of computational tasks and communication are
exaggerated.

A. Results

The timing behavior of the simulated case study is displayed
in Figure 4. Particularly interesting events are marked with
numbers. At Event 0, the system description and specifications
are initialized, which leads to the generation of new production
plans. At Event 1, the first plan is created, and the first stage of
the consensus begins, in which the gateway and cloud devices
validate the plan. After a majority of devices agrees (Event 2),
the second stage of the consensus takes place, which ends at
Event 3. As a result, the production plan is set to valid and the
devices are configured. Consequently, the second production
plan, which is now outdated, is dismissed in the second phase
of the consensus (Event 4). When Device 2 fails (Event 5),
this is recognized as a system change (Event 6) and leads to
the generation of new plans. Eventually, a new plan passes both
stages of the consensus and replaces the old plan (Event 7).
Since the last plan is already outdated when it is ready, it is
discarded in the first stage of the consensus (Event 8).

B. Discussion

The case study highlights the features of the simulation, and
demonstrates the feasibility of the architecture and the two-
stage consensus algorithm. The system is able to automatically
generate a production plan that enables the control devices to
produce. The greedy graph-search algorithm is able to find
a valid production plan and may in the future be exchanged
for a more elaborate algorithm that can consider a multitude
of factors. The control devices configure themselves when
the production plan is selected and begin the process control
autonomously.

After the failure of Device 2, new production plans are
generated automatically. Following a cleanup phase, in which
the state of the previous production is discarded, the involved
devices configure themselves again and begin producing ac-
cording to the new plan. In the future, this cleanup phase may
be replaced by a stateful reconfiguration, where leftover work-
pieces are considered. An approach similar to the calculation
of migration routes proposed by [11] may be utilized.

The feasibility of the two-stage consensus algorithm is
demonstrated. The first stage, featuring a functional validation,
can take place without interrupting the potentially safety- and
timing-critical process control. Only the second stage requires
the synchronization between all involved devices. As a result,
the devices are able to decentrally configure and reconfigure
themselves, showing resilience against failures. The custom
simulation framework is able to perform a meaningful quanti-
tative timing analysis and provides an extensible skeleton for
future implementations.

IV. RELATED WORKS

In the previous section we demonstrated the functionalities of
the architecture in a simulation. In the following, we summarize
how this architecture relates to current research.

Cloud Manufacturing promises the service-orientied pairing
of manufacturing demand and supply through a cloud archi-
tecture [3]. As such, the abstraction level is much higher and
the production plan does not consider safety- or timing related
properties. Within Cloud Manufacturing, the issue of trust and
security has been touched and may be solved by blockchain
technology, but since the abstraction level is higher, safety
validation is not commonly applied [4].

In CPPS, flexibility, reconfigurability, and adaptability have
been considered for decades [5]. With the introduction of the
self-x characteristics, such as self-evolvable, self-reconfigurable,
self-diagnosing, the systems themselves are involved in the
process of evolution, reconfiguration, and diagnosis, whereas
before, it was performed on them [2].

Most commonly, these concepts of self-organisation are
implemented as multi-agent systems [14]. A network of (more
or less) autonomous agents is empowered to organize itself with
respect to a common goal. One example, in which a multi-agent
system is used for production planning, is given by [9].

By contrast, our approach combines more traditional opti-
mization algorithms with a decentralized consensus algorithm.
The ability to generate a production plan is reserved for devices
with larger computational capabilities or the cloud, whereas
validation can be performed more liberally, and the feasibility
can be checked on every device. This allows us to open our
architecture to production plans from arbitrary providers, may



Production Plan 4 .—"’—"
Production Plan 3 @ @ @ - - .‘\
Production Plan 2+ @ z .7LA—V/ @ '/@ Legend
i 4 A Control Task
Production Plan 1 x/ x -\ ‘/ Prod. Plan Generation Task
Dist. Ledger A ° @ L) Validation Task
Cloud Dev. 2021 A v Bl Feasibility Check Task
Device Configuration Task
Cloud Dev. 201+ A v Device Cleanup Task
Gateway Dev. 1044 A= A A B Workpiece transport
Communication
Gateway Dev. 103 A-A A v X Interrupt / Failure
Gateway Dev. 1024 A=A A v A Vote Yes
Gateway Dev. 101 A= A A v V Vote No
Control Dev. 7 .
Control Dev. 6 N W B
Control Dev. 54 l . l ®
Control Dev. 4 l . . ®
Control Dev. 3 - . et ‘ b 3
Control Dev. 2 - ._- t @
Control Dev. 1 l . : ‘ 8

T T T T T T T
0 10 20 30 40 50 60

70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

Time [s]

Fig. 4. Time diagram representing the result from the discrete event simulation. After system initialization (0), a production plan is generated (1). From the
point when all devices agree (3), the new plan runs until a device failure appears (5), at which point new production plans are generated. Eventually, a new

plan is found and applied (7). Timing is exaggerated for better visualization.

they be generated by genetic algorithms, artificial intelligence,
or multi-agent systems.

With respect to service composition, [12] proposes a trust
evaluation of new services by using model-based testing. The
trust level is then used in the selection of services during the
service composition. This enables the composition of services
from untrusted origins. Similarly, our validation and two-stage
consensus generate trust in a production plan from potentially
unknown or untrusted origins.

Finally, with the introduction of blockchain technology, the
use of distributed ledgers for software updates [15], task
allocation [16], and distributed decision-making [17] could be
investigated. The two-stage consensus of our work may be
implemented with a distributed ledger, but is not bound to it.
The formal validation as part of our consensus extends beyond
the level of validation that is performed in most blockchain
applications to date.

V. CONCLUSION & FUTURE WORKS

This paper presents a novel system architecture for resilient
Cyber-Physical Production Systems. We define an autonomous
system operation consisting of three phases: Automatic produc-
tion plan generation, functional validation, and two-stage con-
sensus algorithm. The architecture is implemented in a custom
simulation framework that enables quantitative timing analyses.
Specifically, we demonstrate the feasibility of our architecture
and the two-stage consensus in a case study, exhibiting the
configuration and reconfiguration behavior following a device
failure.

The architecture and the simulation framework will be ex-
tended in future projects, allowing research in multiple direc-
tions, some of which are:

Optimization: Multi-objective production planning for the
purpose of configuration and stateful reconfiguration.
Consensus: Decentralized decision-making algorithms in

manufacturing with the goal of real-time adaption.
Validation: Hierarchical, formal verification of configurations
and reconfigurations with respect to safety and timing.

(1]
(2]
(3]
[4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

REFERENCES

P. A. Hancock, “Imposing limits on autonomous systems,” Ergonomics,
2017.

M. Onori, D. Semere, and B. Lindberg, “Evolvable systems: an approach
to self-x production,” Int J. of Computer Integrated Manufacturing, 2011.
X. Xu, “From cloud computing to cloud manufacturing,” Robotics and
computer-integrated manufacturing, vol. 28, no. 1, 2012.

X. Zhu, J. Shi, S. Huang, and B. Zhang, “Consensus-oriented cloud
manufacturing based on blockchain technology: An exploratory study,”
Pervasive and mobile computing, vol. 62, 2020.

Y. Koren, X. Gu, and W. Guo, “Reconfigurable manufacturing systems:
Principles, design, and future trends,” Frontiers of Mechanical Engineer-
ing in China, 2018. .

S. Jeschke, C. Brecher, T. Meisen, D. Ozdemir, and T. Eschert, “Industrial
internet of things and cyber manufacturing systems,” in Industrial Internet
of Things: Cybermanufacturing Systems, S. Jeschke, C. Brecher, H. Song,
and D. B. Rawat, Eds. Cham: Springer, 2017.

P. Skobelev and D. Trentesaux, “Disruptions are the norm: Cyber-Physical
multi-agent systems for autonomous Real-Time resource management,”
in Service Orientation in Holonic and Multi-Agent Manufacturing.
Springer, 2017.

R. Ramezanian, D. Rahmani, and F. Barzinpour, “An aggregate production
planning model for two phase production systems: Solving with genetic
algorithm and tabu search,” Expert systems with applications, 2012.

N. He, D. Z. Zhang, and Q. Li, “Agent-based hierarchical production
planning and scheduling in make-to-order manufacturing system,” Inter-
national Journal of Production Economics, 2014.

J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, “Review of job shop
scheduling research and its new perspectives under industry 4.0,” Journal
of intelligent manufacturing, 2019.

B. Pourmohseni, S. Wildermann, M. GlaB, and J. Teich, “Hard real-time
application mapping reconfiguration for NoC-based many-core systems,”
Real-Time Systems, 2019.

B. Shala, U. Trick, A. Lehmann, B. Shala, B. Ghita, and S. Shiaeles,
“Trust-Based composition of M2M application services,” in International
Conference on Ubiquitous and Future Networks. 1EEE, 2018.

K. Muller and T. Vignaux, “Simpy: Simulating systems in python,”
ONLamp. com Python Devcenter, vol. 650, 2003.

D. Ye, M. Zhang, and A. V. Vasilakos, “A survey of Self-Organization
mechanisms in multiagent systems,” IEEE Transactions on Systems, Man,
and Cybernetics, 2017.

B. Lee and J.-H. Lee, “Blockchain-based secure firmware update for
embedded devices in an internet of things environment,” The Journal
of supercomputing, 2017.

T. L. Basegio, R. A. Michelin, A. F. Zorzo, and R. H. Bordini, “A de-
centralised approach to task allocation using blockchain,” in Engineering
Multi-Agent Systems. Springer, 2018.

E. Castell6 Ferrer, “The blockchain: A new framework for robotic swarm
systems,” in Proc of the Future Technologies Conf (FTC). Springer, 2019.



