
Runtime Deployment, Management and Monitoring
of Web of Things Systems

Ege Korkan1, Miguel Romero Karam1, Sebastian Kaebisch2, Sebastian Steinhorst1
1 Technical University of Munich, Germany, Email: {ege.korkan, miguel.romero, sebastian.steinhorst}@tum.de

2 Siemens AG, Germany, Email: {sebastian.kaebisch}@siemens.com

Abstract—Internet of Things (IoT) applications have
been traditionally programmed using predefined device-level
frameworks, tightly coupling software with the underlying
hardware. The Web of Things (WoT) on the other hand
abstracts interfacing with devices through the WoT Thing
Description (TD) standard, allowing to program applications
for Systems of Things, referred to as Mashups. In addition
to the benefit of being programmed in high-level languages,
WoT Mashups can be ported into serialization formats such
as the WoT System Description (SD) for better insight and
verification of the Mashup. Although WoT readily facilitates
the development of WoT Mashups, it lacks a sound mechanism
for remote deployment, management, and monitoring of such.
In this paper, we propose a method and its corresponding
open-source implementation, the WoT Runtime Framework,
to close the development cycle of WoT Mashups. It allows
users to deploy WoT Mashups either as code or in System
Description format, manage their life cycle, verify the correct
functionality and monitor both runtime and Mashup-specific
information. The evaluation proves inter-runtime communication
between multiple instances of the WoT Runtime is possible, and
demonstrates this with examples from the industrial automation
and smart agriculture domains.

Index Terms—Web of Things, Internet of Things, WoT
Runtime, Remote Deployment

I. INTRODUCTION

The Internet of Things (IoT) has become indispensable
across industries and verticals, but exponential growth
and lack of standards lead to an ever more fragmented
IoT ecosystem. Furthermore, the inherent complexity and
interdisciplinary nature of the IoT environments makes its
implementation challenging for adopters. Despite an increased
offering of off-the-shelf devices to alleviate the complexity
from manufacturing through deployment, value-generation
only truly begins after devices become operational. At this
stage, users are left responsible for harvesting value from
their implementations and the lack of interoperability and
high-coupling between hardware and software significantly
hinders this process.

The Web of Things (WoT) standards by the World Wide
Web Consortium (W3C) are intended to enable interoperability
across IoT platforms and application domains [1]. The W3C
WoT proposes the Thing Description (TD) [2] as the central
component to uniformly describe the interaction interfaces of
IoT devices or Things, as referred to in this paper. Analogous
to the index.html of web-pages, a TD acts as the single point
of entry for interfacing with Things.

Motivation: An open and community-driven WoT has
the potential to bridge the gap between the device and
application domains. The WoT concerns itself with the

WoT	Systems	of	Things	

GUIs

W
oT

	R
un
tim

e

CLIs ThingsAPIs

W
oT

	R
un
tim

e

Admin	API

WoT	Servient

SD SRD

Admin	API

WoT	Servient

SD SRDSD SRD

KEY

SRD

TD

SD

2)	Manage1)	Deploy 3)	Monitor

Fig. 1: Overview of the proposed WoT Runtime Framework with two
running instances, each of which can be remotely administered by
any number of clients through the admin API, allowing to remotely
deploy WoT System Descriptions (SDs) (1), manage their lifecycle
(2) and monitor them via the WoT System Runtime Description
(SRD) (3).

application layer, above the inherent complexities present
in the lower-level IoT domain. By doing so, it enables
programming IoT applications at a higher-level, serving as
a unified abstraction for interconnecting Things and Systems
of Things, or Mashups. As an extension to the TD, the WoT
System Description (SD) [3] introduces a means of specifying
this application logic, bringing composability and serialization
to Mashups, as the TD does for Things.

Contributions: While the SD facilitates composition and
automatic code generation for the deployment into WoT
runtimes, doing so is inconvenient for developers in the current
WoT ecosystem. This paper leverages the SD and provides
the missing block in the WoT development cycle: a systematic
approach for remote deployment, management, and monitoring
of WoT Things and Systems applicable to new and existing
IoT solutions whose overview can be seen in Fig. 1. Here, one
can see individual Things represented by TDs and are part of
Mashups represented by SDs.

Parting from the assumption of pre-deployed Things,
we introduce a method and its corresponding open-source
implementation, the WoT Runtime Framework, to provide:

• remote deployment, management, and monitoring of WoT
Mashups into safe sandboxed runtimes, shown by the



numbered arrows in Fig. 1.
• a systematic approach for control and visibility of WoT

system runtimes via a runtime controller in form of a
TD-compliant WoT System Runtime Description (SRD),
allowing to compose multi-layered architectures,

• observability and verification of WoT Systems via
runtime logs, metrics and traces.

Section II further introduces relevant WoT aspects, while
Section III and IV go into methodology and implementation
details respectively. Aforementioned contributions are
evaluated in Section V with smart agriculture and industrial
automation case studies. Related work is discussed in Section
VI and Section VII concludes.

II. WEB OF THINGS

The W3C WoT aims to facilitate usability of the IoT and
its interoperability by exposing devices to applications as WoT
Things, decoupling them from the details of their underlying
protocols and data models. Despite being first conceptualized
in 2009 [4], the first official standards, the WoT Architecture
[1] and the WoT Thing Description [2], were published by
the W3C WoT Working Group in April 2019. The central
concept in the WoT is that Things expose their Interaction
Affordances and describe them through a TD document,
which can then be consumed by other Things or services for
interaction. Interaction Affordances can be Properties, Actions
or Events and provide a means of modeling the network-facing
interface of physical or virtual Things, serializable through a
TD document.

A. WoT Thing Description
A Thing Description provides a data format for describing

metadata and network-facing interfaces of Things. In the WoT
context, a Thing is an abstraction of a physical or virtual
entity that provides interactions to and participates in the
Web of Things [2]. A TD instance is composed of four main
components: Thing Metadata, a set of Interaction Affordances
to describe interactions, Data Schemas for machine-readability
of exchanged data and Web Links to express relationships
to other Things or documents on the Web. TDs are encoded
in JSON-LD1 by default and instances can be hosted by the
Thing itself or externally, allowing both resource-restricted and
legacy devices to take part in the WoT.

B. WoT Scripting API
The Scripting API is an optional building block in the

W3C WoT and provides a convenient way to extend WoT
capabilities and implement WoT applications [5]. Scripting
requires the ability to run a WoT Runtime and script
management, for which gateways or browsers lend themselves
well and are thus commonly used. The WoT Scripting API
[5] defines an application programming interface (API) to
allow scripts to discover and operate Things and expose
locally defined Things. The WoT Interface represented by
the Scripting API strictly follows the WoT Thing Description
specification and provides layered interoperability based on
how Things are discovered and used: exposed and consumed.

1https://www.w3.org/TR/json-ld11

B)	WoT	Runtime

2.	generate 3.	execute

A)	WoT	System

abstract
and

serialize

monitor
and

control

C)	System
Runtime

4.	expose

D)	Consumers

Admin	API

WoT	Servient

SD SRD
1.	deploy

5.	consume

hosting

Fig. 2: Overview of a WoT System (A) abstracted and serialized as
an SD in an instance of the WoT Runtime (B) running in a remote
host. Through the admin API (application programming interface)
of the WoT Runtime, deployment (1) of the SD is made possible,
which triggers the code-generation (2) and execution (3) steps. This
results in a running WoT System Runtime process (C), which is
automatically hosted by the WoT Runtime (B) and exposed (4) as an
SRD for clients to consume (5) and thus interact with it, enabling its
monitoring and control.

Consuming a Thing: Creates a local programmatic object
which exposes the described WoT Interactions. A Consumed
Thing allows the TD to be introspected and to read, write and
observe Properties, invoke Actions and subscribe to Events of
the corresponding Thing.

Exposing a Thing: Creates a Thing to be exposed on the
network based on its TD by generating the corresponding
protocol bindings. An Exposed Thing allows adding, removing
and registering service handlers for Properties, Actions and
Events and emitting Events.

C. WoT System Description

The WoT System Description introduced in [3] enhances
the TD with additional keywords for the description of WoT
Systems, or Mashups. By building on the TD format, the SD
shares its advantages to provide a textual format for describing
Systems of Things. To do so, the SD introduces a means to
specify the execution of interactions and represent application
logic consisting of programming structures e.g. if-statements,
for-loops and wait commands.

III. METHODOLOGY

In this section, we present our systematic approach
for remote deployment of WoT Systems into individual
sandboxed runtime environments as well as the methodology
used for management of those runtimes and monitoring
of Mashup-specific information. We first establish the
requirements of this paper, then introduce our approach.



A. Requirements

The following requirements set the focus and outline the
goals of our WoT Runtime methodology, and drive our
approach, explained in Section B:

• R1: Remote deployment, management, and monitoring
of runtime instances from arbitrary clients.

• R2: Exposure over the network to enable consumption
of WoT Runtimes as if they were Things, allowing
multi-layered architectures.

• R3: Monitoring and verification ability for obtaining
runtime and Mashup-specific information.

• R4: Modular WoT Runtime architecture to allow
composing robust, loosely-coupled software systems.

• R5: A reference user interface (UI) client to visually
exhibit core features.

B. Approach

Our approach is structured in five main steps: deploy,
generate, execute, expose, and consume, as illustrated in Fig.
2 and further detailed below with matching numbers.

1. Remote Deployment: Deploying WoT Systems into
secure runtime environments as code or in SD format
represents a core of our methodology. While the SD already
provides a serialization format for defining Mashups, it lacks a
means to deploy these in an automatic and reproducible way.
To do so, the core module of the WoT Runtime Framework
exposes a uniform network interface to allow for both
programmatic and over-the-air deployments. By detaching the
deployment target (the core module) to the deployment source
(any client capable of communicating with the admin API), the
framework remains decoupled and thus flexible. Borrowing
from well-established REST principles, our approach enables
composition of distributed architectures, where WoT Runtimes
become another component of the overarching system.

2. Code Generation, Transpilation and Adaptation:
Considering how WoT Systems should be deployable in SD
format, a means of generating executable code is necessary.
Our methodology extends on the open-sourced algorithm
introduced by the WoT System Description [3] to generate and
transpile SDs into source code for the WoT Runtime to execute
programmatically. At this stage, the parseable SD logic permits
generating highly-optimized code for efficient execution and
alignment to WoT Scripting API standard.

In addition to the code generation step and transpilation
steps, a code adaptation step is necessary to permit tracking
code execution without polluting the auto-generated WoT
System code, neither syntactically nor in its execution. This
way, WoT System logic remains true to the originally deployed
version. We therefore propose static code analysis and
insertion of asynchronous annotations as wrapper functions,
or hooks, to enable monitoring code execution at runtime.
Insertion of these asynchronous hooks remains non-blocking,
maintaining the efficiency of code execution.

3. Execution Control and Environment: Next to secure
deployment of WoT Systems to remote hosts, the safety
of the WoT System Runtime environment itself is of high
priority. We propose sandboxing the WoT System Runtime
in a secure, self-contained execution context. This prevents

stop

error

restart

done

restart

restart

start

workdone

RUNNINGIDLE LOADING

FAILED

STOPPED

WORKING

Fig. 3: State machine illustrating the possible operational states and
transitions for running WoT System Runtimes. Deterministic aspects
of the state machine ensure correct states and transitions at all times,
to allow for a single-source of remote truth between the actual running
runtime and its state, managed by the core module and consumable
by clients. The state machine is directly mapped into the SRD, which
exposes the current active state via the status Property and maps
transitions as Events which fire on state change.

code from escaping its execution context into the host, which
has the capability of running multiple execution contexts
simultaneously. The sandbox runs its own isolated process,
side-by-side to the main process of the core module and can
also require permitted external libraries and built-in modules.
Each process can be monitored and controlled remotely while
an internal control flow mechanism guarantees state and state
transitions of the WoT System Runtime remain deterministic,
as shown in Fig. 3.

4. WoT System Runtime Description (SRD): We
propose the TD-compliant SRD as a means for standardizing
runtime management and both runtime and Mashup-specific
monitoring of running WoT Systems. The SRD is dynamically
generated and automatically exposed over the network by
the WoT Runtime for each running WoT System Runtime
instance. The SRD exposes WoT System Runtime information
such as status and memoryUsage as Properties, start,
restart, and stop commands as Actions and state changes
or transitions as Events, such as start, work, and error.
Mapping the entire operational state chart of the WoT System
Runtime shown in Fig. 3 into corresponding Interaction
Affordances in the SRD enables real-time synchronisation
between the runtime and its digital representation, resulting
in precise verification of operational safety.

For the actual monitoring and verification of WoT System
Runtime instances, we propose an approach that assimilates
that of conventional software, borrowing from standard
observability patterns, namely logs, metrics and traces.
Aligning to well-know standards allows monitoring of WoT
Runtimes via existing software monitoring methods and tools,
such as OpenTelemetry2. This further reduces implementation
effort and promotes monitoring of WoT Runtimes with a
systematic, out-of-the-box approach based on the three pillars
of observability [6]:

• Logs: an immutable, timestamped record of discrete
events over time

2https://opentelemetry.io/



• Metrics: a numeric representation of data over time
• Traces: a series of events that encode the end-to-end

request flow through a system
5. Consuming the SRD: By fully complying to the TD

specification, the SRD permits its consumption in the WoT
context as if it were a Thing. This enables composition
of multi-layered WoT applications in which WoT System
Runtimes are available for interaction, as shown in Fig.
1. Concretely, consuming SRDs permits clients to remotely
manage and monitor running instances of the WoT Runtime.
Moreover, the serializable SRD format facilitates automatic
graphical user interface (GUI) generation for visual interaction
in the form of visuals and controls. Thus, the SRD describes a
flexible yet capable interface for arbitrary client consumption,
such as within WoT applications or from GUI clients. The
SRD is automatically hosted by the WoT Runtime for each
deployed and running WoT System.

IV. IMPLEMENTATION

Our approach, which is detailed in Section III.B, is delivered
in form of a modular and extensible software framework,
with the functional source code publicly available3, ready for
use and eventual extension. We first explain its architectural
components in Section A, followed by the details on how our
implementation sets the execution environment and controls
the execution, in Section B and C, respectively.

A. WoT Runtime Framework

Here, we present an architectural overview of the modular
software framework proposed by this paper: the WoT Runtime
with its core and UI modules.

Core Module: The entire framework is structured around
the standalone core module, which by itself should provide
all intended functionality (remote deployment, management,
and monitoring) and a portable distribution to allow for
decentralized deployments both to the edge and cloud. It
provides all the main features in a single package and
enforces loose coupling through its RESTful API to promote
development of third-party clients to directly interact with it,
rather than locking users into specific clients. This allows
integrating any number of optional clients, such as GUIs or
command-line interfaces (CLIs). The Core Module strictly
aligns to the requirements presented in Section III.B.

UI Module: In addition to the core package, we provide a
multi-tenant GUI which exposes the entire set of features from
the core package as a visual interface to further streamline
the development cycle of WoT Systems. It consists of a web
application to allow targeting multiple WoT Runtime processes
running across any number of hosts, both at the cloud or edge
of the network, as long as they are accessible through it. The
single requirement being that the IP address and port of the
host is known and accessible for the GUI to connect to.

B. Execution Environment

Sandboxing: The WoT Runtime Framework sandboxes
each running WoT System Runtime in its own sandboxed

3https://github.com/tum-esi/wot-runtime

B)	VM:	Sandboxed	Environment
A)	SEC:	WoT	System	Runtime

C)	Thread:	(isomorphic)	Worker

worker.start()

worker.terminate()

Fig. 4: The sandboxing approach implemented by the WoT
Runtime Framework to encapsulate self-contained script execution
contexts (SEC) of each WoT System Runtimes (A) in a sandboxed
environment (B) using virtual machines (VMs) and consequently
in an optionally isomorphic worker (C), enabling execution
control of the core process by directly controlling the outermost
worker instance, which conveniently exposes a start() and
terminate() methods.

execution contexts by the means of the vm2 library4. vm2
is a sandboxing utility to allow execution of untrusted code,
protecting against known methods of attack assuming the
sandboxed code is not malicious itself. Still, the process
is self-contained and does not have access to the external
execution context, namely that of the core module.

Dependency Injection: Additionally, built-in require
or import is overridden to control module access and
allow requiring dependencies from inside the scripts to be
run. Isolation is thus achieved by spawning an independent
sandbox for each running WoT System Runtime instance,
while importing third-party libraries and built-in modules is
still possible from inside. Fig. 4 illustrates the aforementioned
sandboxing architecture with the sandbox environment (B)
wrapping the WoT System Runtime (A).

C. Execution Control

SRD: The deterministic execution control flow implemented
internally and shown in Fig. 3 is directly mapped to and
made available by the SRD as Interaction Affordances for
consumption. The current active state is exposed by the
status Property which takes one of the finite list of
states: idle, loading, running, working, stopped
or failed. Analogously, all transitions between states are
represented by Events which fire on state change. The manual
state transitions (solid arrows) are exposed via the start,
restart, and stop Actions for manual invocation, while
automatic state transitions (dashed arrows) remain internal.

Control Mechanism: An additional mechanism for
execution control of the sandbox is required since the VM
implementation (B in Fig. 4) lacks the ability to stop or
kill running processes. Due to this, each sandboxed WoT
System Runtime is spawned inside its own worker thread
(C in Fig. 4), using the native worker_threads library
of Node.js, which enables using threads to parallelize code
execution. Apart from being useful to perform data-intensive
operations, workers provide the WoT Runtime with the ability
to gain execution control of the WoT System Runtimes
by controlling the wrapping worker instance directly, which
exposes a terminate() method to stop the worker instance
as seen in Fig. 4).

4https://github.com/patriksimek/vm2



BR Y G

C)	Conveyor	belt

E)	Color	sensor

D)	Infrared	sensor

A)	Robot	arm

B)	Sliding	rail

Use	Case	A:	Industrial	Automation

Fig. 5: Top view of industrial automation scenario setup (use case A)
with a robot arm (A) mounted on a sliding rail (B) and two conveyor
belts (C), each with an infrared sensor (D) and a color sensor (E).
The evaluation consists of a WoT System with the task of sorting the
blocks by color and placing them in their corresponding drop zone
in the middle platform.

Apart from gaining an execution control mechanism, the
worker adds an additional layer of security to the already
sandboxed WoT System Runtime environment. In addition
to our implementation, usage of workers could eventually be
adopted in browser clients via the web-native WebWorker API,
instead of the worker_threads module. By doing so, the
WoT Runtime could benefit from isomorphic deployments into
either the core module (Node.js) or the UI module (browser).
The optionally isomorphic worker (C) can be seen in Fig. 4
wrapping the already sandboxed environment (B).

V. EVALUATION

In this section, we present two case studies to exemplify
our contribution and evaluate our approach. These are:

• An industrial automation use case consisting of a robot
arm and two conveyor belts, each with an infrared sensor
and color sensor, illustrated in Fig. 5.

• A smart farm simulation consisting of different sensors
and sprinklers, illustrated in Fig. 6

Metrics: The correct deployment of both WoT Systems in
SD format, proper code generation and execution, as well as
the ability to manage and monitor the running WoT System
Runtime through its SRD were evaluated.

Procedure: The steps taken for the evaluation of each WoT
System using the WoT Runtime UI are:

1) Create a new WoT Runtime host with default WoT
Servient configuration.

2) Upload an SD to describe the WoT System.
3) Start the system and check for correct Property readings,

Action invocations, and Event notifications from the
SRD in the UI and directly through an HTTP client.

4) Stop the System, modify its SD, re-deploy and repeat
steps 2-3 for the System described by the new SD.

Setup: Evaluation was made on two independent hosts, each
running a containerized WoT Runtime process with the default
WoT Servient configuration. Table I gives an overview of the
setup for each.

Fig. 6: Overview of evaluation results in the example of the
smart farm simulation (use case B). Through the WoT Runtime,
management of multiple SDs and TDs (A), runtime monitoring via
logs, metrics, and traces (B) and mashup monitoring and control via
auto-generated GUI (C) is made possible. The WoT System Runtime
runs in a safe and secure environment (D) exposed by the SRD for
consumption and composition of multi-layered architectures (E).

Results: Both use cases were evaluated with the
aforementioned procedure with positive results. The evaluation
proves that the approach and implementation presented by this
paper works in practice. With reference to the requirements
outlined in Section III.A, we have succeeded in enabling
remote deployment, management, and monitoring of WoT
System Runtime instances from multiple arbitrary clients
(R1), exposing them via the SRD to allow for consumption
within the WoT context (R2). The SRD conveniently provides
monitoring and verification utilities for both runtime and
Mashup-specific information (R3). Moreover, the modular
design of the WoT Runtime implementation allows composing
loosely-coupled software systems (R4), exemplified by the
also implemented WoT Runtime UI (R5), which serves
as a reference visual client. A proof of concept is
realized in industrial automation and smart agriculture case
studies, asserting that an improved version of the proposed
implementation could be used in real-life deployments.

The two distinct setups, shown in Table I, indicate that
the proposed methodology works for devices with different
resource constraints, like the Raspberry Pi 4 used for the smart
agriculture case study and a conventional laptop used for the
industrial automation case.

Criteria Case Study A Case Study B
Host OS Ubuntu 20.10 Raspberry Pi OS

Protocol bindings HTTP, CoAP HTTP
Nb. of Things 5 9

Lines of TS codea 1393 252
Lines of JS codeb 1466 288

Deployment format SD Code
aTypeScript source code. bTranspiled JavaScript code.

Table I: Evaluation setup for the industrial automation scenario (A,
illustrated by Fig. 5) and the smart farm simulation (B) (shown in
Fig. 6 use cases comparing them based on relevant criteria, listed in
the first column.



VI. RELATED WORK

Despite similar methodologies existing for the deployment,
management and, monitoring of software systems, only few
target the W3C WoT. Our approach remains unique in that it
brings together all three features while focusing on the WoT
exclusively. We compare related work from the literature in
three categories listed below.

Deployment: Several solutions come to mind for the remote
deployment of software and firmware in the IoT. For practical
purposes, we list the distinct approaches rather than specific
solutions. On the cloud infrastructure side, Serverless and
Containers are noteworthy. Serverless allows for the remote
deployment and execution of functions in an as-a-Service
manner, but remains best-suited for event-driven workflows.
Containers on the other hand provide an encapsulated runtime
for executing arbitrary code, and are thus similar to our
proposed WoT Runtime. Nevertheless, container solutions
(e.g. Docker5) do not provide a mechanism for deploying
SDs directly like the WoT Runtime does, and are thus not
streamlined for WoT applications. On the IoT side, multiple
solutions for over-the-air (OTA) firmware deployment directly
to devices exist [8]. These, however, are usually suited for
device-specific logic and security patches, rather than WoT
Mashups to program interactions between them like we
propose with the WoT Runtime.

Specific to the W3C WoT, CLI tools like WoT Application
Manager (WAM)6 and the thingweb.node-wot library
CLI itself exist, which provide a lower-level command-line
interface for executing arbitrary WoT scripts at the host.
Similarly, the authors at [3], propose different functions to
enable the use of SDs for code generation and deployment
purposes, but lack any way to systematically monitor such
said deployments. On the other hand, the WoT Store proposed
at [9] proposes mashup deployment, however, it does not
enable multi-layer architectures nor a way of monitoring such
deployed mashups.

Management: While many alternative platforms for
management of containerized workloads and services exist
(e.g. Kubernetes), these are not specific to WoT nor do they
come with support for direct deployment of WoT Systems
from code or SDs. The WoT Store [9] provides some basic
management functionality but is not generalizing this to allow
management of any mashup from the same abstraction level.
The WoT Runtime provides management features in a way to
allow management of any WoT mashup, while also supporting
deployment and monitoring needs.

Monitoring: No other monitoring solution was found with
direct support for monitoring of W3C WoT applications.
Generalizing, traditional software monitoring tools like
Prometheus7, OpenTelemetry8 could be used to monitor WoT
scripts based on logs, metrics and traces. However, these
solutions require programmatically handling the monitoring
functionality inside the WoT scripts, making them impractical
for WoT Mashup development. Moreover, while great for

5https://www.docker.com/
6https://github.com/UniBO-PRISMLab/wam
7https://prometheus.io/
8https://opentelemetry.io/

observability at the network layer (e.g. incoming/outgoing
network requests), they have no support for monitoring
neither runtime nor Mashup-specific information like our
proposal. Visual monitoring solutions like Grafana could be
used to monitor WoT applications in flexible ways. However,
this would require a high level of configuration from the
user, as these tools are generally data source agnostic, but
not WoT specific nor do they have support for TDs. The
WoT Runtime on the other hand leverages TDs directly for
zero-configuration, automatic GUI generation of both runtime
and Mashup-specific information, making it practical for
streamlined WoT development.

VII. CONCLUSION

This paper introduces an additional building block to the
Web of Things for the remote deployment, management
and, monitoring of WoT Systems. With it, WoT System
development is streamlined and maintenance reduced,
accelerating the W3C WoT innovation cycle. We have
applied our approach and evaluated our publicly available
implementation in two case studies: an industrial automation
scenario and a smart agriculture scenario, demonstrating how
our proposed solution works in practice. In these two use
cases, we show how our WoT Runtime enables scalable,
reliable, and safe WoT Systems with minimal development
effort, bringing the W3C WoT closer to users, reinforcing
its adoption, and motivating the advancement into distributed,
multi-layered WoT architectures.

REFERENCES

[1] Web of Things (WoT) Architecture 1.1. M. Lagally; R. Matsukura;
T. Kawaguchi; K. Toumura; K. Kajimoto. W3C. 9 April 2020. URL:
https://www.w3.org/TR/2020/REC-wot-architecture-2020F0409/

[2] Web of Things (WoT) Thing Description. S. Käbisch;
T. Kamiya; M. McCool; V. Charpenay; M. Kovatsch.
W3C. 9 April 2020. W3C Recommendation. URL:
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

[3] A. Kast, E. Korkan, S. Käbisch and S. Steinhorst, ”Web of Things
System Description for Representation of Mashups,” 2020 International
Conference on Omni-layer Intelligent Systems (COINS), Barcelona,
Spain, 2020, doi: 10.1109/COINS49042.2020.9191677.

[4] D. Guinard and V. Trifa, “Towards the Web of Things: Web Mashups
for Embedded Devices,” in Workshop MEM 2009, in proc. of WWW,
Madrid, Spain, 2009.

[5] Web of Things (WoT) Scripting API. Z. Kis; D. Peintner; C. Aguzzi;
J. Hund; K. Nimura. W3C. 24 November 2020. W3C Working Draft.
URL: https://www.w3.org/TR/2020/NOTE-wot-scripting-api-20201124/

[6] Sridharan, C. (n.d.). Chapter 4. The Three Pillars of Observability. In
Distributed Systems Observability, 2018, O’Reilly Media.

[7] D. Peintner, M. Kovatsch, C. Glomb, J. Hund, S. Kaebisch, V.
Charpenay, “Eclipse Thingweb Project”, 2018, [Online; accessed April
21, 2019]. Available: https://projects.eclipse.org/projects/iot.thingweb

[8] J. Bauwens, P. Ruckebusch, S. Giannoulis, I. Moerman and E. D.
Poorter, ”Over-the-Air Software Updates in the Internet of Things:
An Overview of Key Principles,” in IEEE Communications Magazine,
February 2020, doi: 10.1109/MCOM.001.1900125.

[9] L. Sciullo, C. Aguzzi, M. Di Felice and T. S. Cinotti, ”WoT
Store: Enabling Things and Applications Discovery for the
W3C Web of Things,” 2019 16th IEEE CCNC, 2019, doi:
10.1109/CCNC.2019.8651786.


