Towards a Behavioral Description of Cyber-Physical Systems
Using the Thing Description

Fady Salama

Ege Korkan
fady.salama@tum.de
ege.korkan@tum.de

Technische Universitit Miinchen
Munich, Bavaria, Germany

ABSTRACT

The World Wide Web Consortium (W3C) introduced the Thing
Description (TD), a standardized and unified human- and machine-
readable semantic description of Internet of Things (IoT) devices
that focuses on describing how to interact with the described de-
vice using its network-interfaces. However, the TDs lack a way
to describe the physical effect of said interactions on the device
itself, as well as on the environment around the device, limiting
its viability for cyber-physical scenarios. In this paper, we propose
an extension for describing the effects of an interaction on the
property affordances of a Thing in the TD as a first step towards
a TD that is able to fully describe a Cyber-Physical System (CPS).
We show this extension permits the generation of accurate Digital
Twins, facilitates machine-aided system design and device mashup
generation and allows for formal verification of the functionality
of CPSs during their deployment and maintenance.

CCS CONCEPTS

« Computer systems organization — Embedded and cyber-
physical systems; « Networks — Cyber-physical networks.

KEYWORDS
Internet of Things, Web of Things, behavioral description

ACM Reference Format:

Fady Salama, Ege Korkan, Sebastian Kabisch, and Sebastian Steinhorst.
2021. Towards a Behavioral Description of Cyber-Physical Systems Using
the Thing Description. In Descriptive Approaches to IoT Security, Network,
and Application Configuration (DAI-SNAC °21), December 7, 2021, Virtual
Event, Germany. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3488661.3494030

1 INTRODUCTION

The advent of the Industrial Internet of Things (IIoT) brings with
it a set of challenges that need to be tackled. Manufacturing fa-
cilities can no longer be considered as independent silos and the
interoperability of devices is no longer insured, because sensor,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAI-SNAC °21, December 7, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9136-8/21/12...$15.00
https://doi.org/10.1145/3488661.3494030

Sebastian Kabisch
Siemens AG
Munich, Bavaria, Germany
sebastian.kaebisch@siemens.com

Sebastian Steinhorst
sebastian.steinhorst@tum.de
Technische Universitat Miinchen
Munich, Bavaria, Germany

7~
P e

)
\o B2

i System Design

""""" (2) ’ F oqnal .
Verification

Digital Twin

»~ Properties v,

"isAffectedBy"

~

-
=
=

e:na:ble:s

]
]
I
L}
1
1
1
1
)

-

"[Actions F

Figure 1: Our extension allows a Thing Description (TD) of a
Thing to describe the effect of invoking an action on its own
property affordances, as well as the on property affordances
of other Things. Using extension facilitates automated de-
vice mashup generation (1), formal verification of the behav-
ior of Cyber-Physical Systems (CPSs) (2) and generation of
more accurate Digital Twin simulations (3).

industrial devices, and whole production systems from different
hardware vendors and in different manufacturing facilities may
need to operate and communicate together using different IIoT
protocols and platforms. Designing such industrial systems so that
they could communicate and function in tandem to perform a joint
functionality is a non-trivial task given the high fragmentation of
Internet of Things (IoT) platforms and technologies.

Therefore, the need for a unified and standardized description of in-
dustrial devices arises. As a step towards this goal, the World Wide
Web Consortium (W3C) introduced the Thing Description (TD) [2],
a standardized and unified human- and machine-readable semantic
description of IoT devices that focuses on describing the interaction
affordance that are used to interact with the described device and
the network-interfaces of such affordances. The TD does not only
make it easier for a system developer to design any system, includ-
ing industrial systems, but also allows for machine-aided design of
such systems.

The TD also facilitates interoperability of different devices across
different protocols based on semantic descriptions of device inter-
actions. Using the information in a TD, it is possible to generate a
software simulation of the device, a Digital Twin, that can emulate
cyber behavior of devices as seen in [5]. Such Digital Twins can aid
the design process of systems before their physical deployment.

https://orcid.org/0000-0001-9225-6625
https://orcid.org/0000-0003-4910-4962
https://doi.org/10.1145/3488661.3494030
https://doi.org/10.1145/3488661.3494030
https://doi.org/10.1145/3488661.3494030

DAI-SNAC °21, December 7, 2021, Virtual Event, Germany

1.1 Problem Statement

While the TD already provides a standardized way for describing
network-interfaces of device interactions, it lacks a way to describe
the physical effect of these interactions on the device itself and
on the system it operates in. This limits the usefulness of the TD
in describing CPS and, in turn, the ability to generate accurate
cyber-physical Digital Twins.

1.2 Contribution

In this paper, we propose an extension for the TD to link the effect of
an interaction on the properties of the described Thing in Section 3,
which can be considered as a first step towards a full cyber-physical
description of a Thing. In Section 4, we show that this addition can
be used to automate system design and device mashup generation,
automatically verify a system during its design phase, deployment
and maintenance, and help generate more accurate Digital Twins.
The rest of this paper is structured as follows: Section 2 introduces
background knowledge about the technologies used in this paper,
and Section 5 presents related work. Section 6 concludes this paper.

2 BACKGROUND INFORMATION

In this section, we present a brief overview of the Thing Description
(TD) specification, as well as its extension, System Description (SD).

2.1 Thing Description

The TD [2] is a JSON-LD document [8] that is both human- and
machine-readable and semantically describes any entity on the Web
of Things (WoT). Such entities can be physical devices, or virtual
entities, such as Digital Twins, and are called Things in the context
of this paper. The TD focuses on describing the interface that a
Thing exposes using standardized interaction affordances, which
are divided into:

(1) Property affordances. They represent states that a Thing
exposes and can be read, written to or observed.

(2) Action affordances. They represent either state manipula-
tions or physical processes that can be invoked.

(3) Event affordances. They represent notifications and data
streams that can be subscribed to.

2.2 System Description

The System Description (SD) [3] extends the TD to allow for de-
scribing network-interfaces of systems of Things, called mashups
in the context of this paper. In such systems, the sequence in which
the interactions from different Things are executed is essential to
the correctness of the performed functionality [4]. To describe such
sequences, the SD introduces the Atomic Mashup (AM) abstraction,
which describes small mashups that perform a specific functional-
ity and these are used as building blocks for bigger mashups. AMs
always have the same structure: A mashup controller executes a
series of unordered input interactions to get data or data streams
from input devices, followed by a series of unordered output inter-
actions/actuation to output devices.

Fady Salama et al.

{"title": "Conveyor Belt",

1

2 "properties": {

3 "speed": {

4 "type": "number",

5 "forms": [{"href": "..."}]

6 3

7 "acceleration": {

8 "type": "number",

9 "forms": [{"href": "..."}]

10 2N

1 "actions": {

12 "start": {"forms": [{"href": "..."}13},
13 "changeSpeed": {"forms": [{"href": "..."}1}3}}

Listing 1: A Thing Description (TD) is a JSON-LD document
that describes the network-interfaces of the interactions as
well as metadata of a Thing. Interaction affordances are di-
vided into property (lines 2-10), action (11-13) and event af-
fordances. TDs do not provide a way to describe the effect of
invoking an action on a property affordance.

2.3 Shortcomings

Both the TD and the SD lack a way to describe how the executed
interactions affect the properties of a Thing or variables of a system.
For some cases, a human agent may easily deduce such effects, i.e.,
a "writeproperty" operation will update a "lightState" prop-
erty or an invoking an action named "changeSpeed" will change a
numeric property affordance named "speed", as seen in Listing 1.
However, this is not feasible in poorly named TDs or for more com-
plex Things in which one interaction may affect multiple properties
or variables. Furthermore, a machine cannot accurately deduce the
effects of interaction based only on natural language.

3 THE PROPOSAL

To remedy the shortcomings of the TD and SD as discussed in Sec-
tion 2, we first formally define the coupling between interactions
and properties to extract the requirements that our proposed ex-
tension needs to fulfill. We then present our proposed solution in
the form of two additional keywords.

3.1 Formal Definition

We can formally describe a TD as a set of interaction affordances
I that include a subset of property affordances P and a subset of
action affordances A with both P and A being mutually exclusive,
e PCIANACIAPNA=0 o
Each interaction affordance exposes a set of operations as described
in 2.1. The two operations that can directly alter properties of a

Thing are "writeproperty" and "invokeaction". The "writeproperty"

operation implicitly defines which property will be altered and, but
"invokeaction" operations lacks such an implicit definition
Hence, there is the need to describe the coupling of action affor-
dances with one or more property affordances. We can consider
this coupling as a mapping a that is defined as:

a:A—>2Pa 2)

where:

Towards a Behavioral Description of Cyber-Physical Systems Using the Thing Description

o 2P4 js the power set of Py.
e P4 is the set of properties affected by actions.

Furthermore, we can define the inverse mapping a~! of Equation 2
as:
al:p—24p (3)
where:
o 24P is the power set of Ap.
o Ap is the set of actions that affect properties.

These mappings represent the transfer function of the action in
regard to the properties it affects and its inverse transfer function
respectively

3.2 Requirements

Based on the formal definitions we introduced in Section 3.1, we
can define the requirements that our extension should comply to.

e Our extension should be able to describe the mapping of
actions to affected properties as per Equation 2.

e Our extension should be able to describe the inverse mapping
as per Equation 3.

o Our extension should permit deeper description of the cou-
pling using additional keywords and/or annotations. This
would allow for describing the transfer function of the cou-

pling.

3.3 The "affects"-keyword

Based on the first and third requirements in Section 3.2, we propose
the "affects"-keyword for action affordances. This keyword ac-
cepts an object or array of objects, with each object corresponding
to a property that is affected the action invocation. These objects
must at least contain the ID in form of a JSON Pointer [1] of said
property but can be extended to include additional keywords or
semantic annotations, permitting the description of the mapping
as a transfer function!. This implements the coupling defined in
Equation 2.

3.4 The "isAffectedBy"-keyword

Complying with the second and third requirements in Section 3.2,
we propose adding the "isAffectedBy"-keyword for property af-
fordances. The keyword accepts an object or array of objects, with
each object corresponding to an action that affects the property
when invoked. These objects must at least contain the ID in form
of a JSON Pointer [1] of said action but can be extended to include
additional keywords or semantic annotations, permitting the de-
scription of the mapping as an inverse transfer function!. This
implements the coupling defined in Equation 3.

An example of a TD using both keywords can be viewed under
Listing 2.

4 EFFECT ON CPS DEVELOPMENT CYCLE

Adding the "affects" and "isAffectedBy"-keywords formally
defines which properties are affected by which actions, removing
ambiguity not only for human agents, but also for machines. This

! There are myriad methods for describing transfer functions and their inverses and
comparing them is out of scope of this paper.

DAI-SNAC °21, December 7, 2021, Virtual Event, Germany

1 {"title": "Conveyor Belt",

2 "properties": {

3 "speed": {

4 "isAffectedBy": [

5 {"id": "/actions/starts"},

6 "id": "/actions/changeSpeed"}13},
7 "acceleration": {

8 "isAffectedBy":

9 {"id": "/actions/changeSpeed"}}},
10 "actions": {

11 "start": {"affects":

12 "id": "/properties/speed"}},

13 "changeSpeed": {"affects":

14 [{"id": "/actions/starts"},

15 {"id": "/actions/changeSpeed"}1}}}

Listing 2: Using our proposed extension on the TD in List-
ing 1 results in this extended TD, which clearly specifies the
coupling between the action affordances and property affor-
dances (Line 5 with Line 11 and Line 13, Line 8 with Line 13).
The other keywords were removed for brevity.

opens the possibility for machine-aided design, verification, and
maintenance of CPS, which we will explore in this section.

4.1 System Design and Mashup Generation

When designing a mashup in CPSs, a human agent needs to con-
sider which interactions need to be executed, but also the correct
sequence in which to invoke these interactions.

While the SD offers the means to describe such mashups, the need to
explore the design space of mashups in a system remains. A manual
exploration of such a design space in industrial scenarios is ardu-
ous, error-prone, and infeasible given the exponential increase in
possible mashups with increasing number of devices/interactions.
Thus, machine-aided exploration of the design space is essential.
Adding the proposed keywords ensures that a machine can under-
stand the coupling between interactions affordances in the same
TD as well as between different Things in an SD and can take advan-
tage of these keywords to automatically generate mashups using
algorithms.

As an example, we can use an algorithm to find all the ac-
tions that can be invoked to alter a specific property using the
"isAffectedBy"-keyword. Such an algorithm can be used to find
alternative execution paths that could lead to the same result, and
can be useful for designing fault-tolerant distributed systems.

4.2 Formal Verification of CPS

Explicitly specifying which properties are altered by invoking an
action permits a machine to automatically and formally verify the
operation of CPSs during design, deployment, and maintenance
phases. To showcase this, we look at the example of a TD that con-
tains 2 action affordances A; and A; and three property affordances
Py, Py, and P3. A1 can alter Py and Py, Ay can alter Py, and Pj3 is not
altered by either A; or A;. We can formally describe this setting
using Equations 2 and 3 as the following:

a(Ay) = {P1, P2} (4)

DAI-SNAC °21, December 7, 2021, Virtual Event, Germany

a(A;) = {P2} (©)

a'(Ps) =0 (©
We also define a set of atomic propositions:

e i(x): action x is invoked.
e ¢(y): property y changed.
e ¢(z): property z changed due to sensing the environment

and, based on these atomic propositions, we define some ground
truths using propositional logic and LTL-formulas[7]:

o Liveness: Invoking an action A should change the properties

it affects in the next state.
i(Ar) — X c(Pp) VP; € a(Ag) (7)

e Safety I: A property can only be altered when an action that
alters it is invoked or the environmental property it senses
changes.

—c(Pr) — =c(Pe) W (i(Ap) Ve(Py)) YA € a™' (Pr) ®)

e Safety 2: Invoking an action does not alter any properties
other than the properties specified in its mapping.

(i(a) A X e(P)) — ~Xc(P) VP ¢ a(Ag))

Based on these ground truths, we can formally verify the follow-
ing properties of our example system:

e From Formula 7:

Liveness of Action Aj:

G(i(A) — X(e(Py) A e(Py)))

Liveness of Action Aj:
G(i(Az) — Xc(Po))
e From Formula 8:
Safety of property P;:
G(=e(P1) — =e(P1) W (i(A1) V e(Py)))
Safety of property Ps:
G(-e(P2) — =e(P2) W (i(A1) V i(A2) V e(Py)))

Safety of property Ps:

G(=c(P3) — —c(P3) W e(P3))
e From Formula 9:
Safety of action Aj:

G((i(A1) A =X e(P3)) — =X c(P3))

Safety of action Aj:
O (1t42) A X (e(P) n ()] — =X (ePr) A e(P)

Such formulas can be automatically constructed based on the key-
words without any human intervention and can be used by a ma-
chine to validate a system during its simulation, deployment, or
maintenance to automatically detect errors such as P3 changing
when A1 is invoked.

Fady Salama et al.

4.3 Digital Twin Generation

Using our proposed extension, the TD is able to capture the physical
behavior of a Thing by describing the transfer functions of its
actions. A TD or SD can, therefore, be considered as a sufficient
description document for automatic generation of Digital Twins,
eliminating the need for reading the specifications of a Thing or the
need for to physically access a deployed system to test its properties.

5 RELATED WORK

There have been other ontologies in literature that aim to describe
the physical behavior of CPS. [6] proposes an ontology that de-
scribes stateful WoT environments by describing the effect of ac-
tuators on environmental parameters that impact the state of the
system and outlining which sensors measure these parameters. Its
main goal is to facilitate automatic system composition. However,
in contrast to our paper, it does not describe the effect of actuation
on the devices.

[5] implemented Digital Twin generation based on TDs. However,
a faithful representation of the device required a human agent to
manually specify the real-life behavior of the device. Our paper
here tries to be a first step towards solving that shortcoming.

6 CONCLUSION

In this paper, we proposed an extension for the TD specification
that allows for describing the coupling between action invocations
and property affordances in a TD. We have formally defined this
coupling as a mapping between action affordances and property
affordances, and used this formulation to define a JSON-LD com-
pliant implementation in the form of two additional keywords. We
showed that, using our extension, it is possible to automatically
generate device mashups, verify the correctness of CPSs properties
using LTL-formulas and generate more accurate Digital Twins.

REFERENCES

[1] Paul C. Bryan, Kris Zyp, and Mark Nottingham. 2013. JavaScript Object Notation
(JSON) Pointer. RFC 6901. https://doi.org/10.17487/RFC6901

[2] Sebastian Kaebisch, Takuki Kamiya, Michael McCool, Victor Charpenay, and
Matthias Kovatsch. 2020. Web of Things (WoT) Thing Description. https:
//www.w3.0rg/TR/2020/WD-wot-thing-description11-20201124/

[3] Adrian Kast, Ege Korkan, Sebastian Kébisch, and Sebastian Steinhorst. 2020. Web
of Things System Description for Representation of Mashups. In 2020 International
Conference on Omni-layer Intelligent Systems (COINS). 1-8. https://doi.org/10.
1109/COINS49042.2020.9191677

[4] Ege Korkan, Sebastian Kaebisch, Matthias Kovatsch, and Sebastian Steinhorst.
2018. Sequential Behavioral Modeling for Scalable IoT Devices and Systems. In
2018 Forum on Specification Design Languages (FDL). 5-16. https://doi.org/10.1109/
FDL.2018.8524065

[5] Ege Korkan, Emanuel Regnath, Sebastian Kaebisch, and Sebastian Steinhorst. 2020.
No-Code Shadow Things Deployment for the IoT. In 2020 IEEE 6th World Forum
on Internet of Things (WF-IoT). 1-6. https://doi.org/10.1109/WF-10T48130.2020.
9221368

[6] Mahda Noura and Martin Gaedke. 2019. WoTDL: Web of Things Description Lan-
guage for Automatic Composition. In 2019 IEEE/WIC/ACM International Conference
on Web Intelligence (WI). 413-417.

[7] Salomon Sickert. 2016. Linear Temporal Logic. Archive of Formal Proofs (March
2016). https://isa-afp.org/entries/LTL.html, Formal proof development.

[8] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, Pierre-Antoine
Champin, and Niklas Lindstrom. 2020. JSON-LD 1.1. https://www.w3.org/TR/
2020/REC-json-1d11-20200716/

https://doi.org/10.17487/RFC6901
https://www.w3.org/TR/2020/WD-wot-thing-description11-20201124/
https://www.w3.org/TR/2020/WD-wot-thing-description11-20201124/
https://doi.org/10.1109/COINS49042.2020.9191677
https://doi.org/10.1109/COINS49042.2020.9191677
https://doi.org/10.1109/FDL.2018.8524065
https://doi.org/10.1109/FDL.2018.8524065
https://doi.org/10.1109/WF-IoT48130.2020.9221368
https://doi.org/10.1109/WF-IoT48130.2020.9221368
https://isa-afp.org/entries/LTL.html
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Contribution

	2 Background Information
	2.1 Thing Description
	2.2 System Description
	2.3 Shortcomings

	3 The Proposal
	3.1 Formal Definition
	3.2 Requirements
	3.3 The jsonld"affects"-keyword
	3.4 The jsonld"isAffectedBy"-keyword

	4 Effect on CPS development cycle
	4.1 System Design and Mashup Generation
	4.2 Formal Verification of CPS
	4.3 Digital Twin Generation

	5 Related Work
	6 Conclusion
	References

