Worst-Case Failover Timing Analysis of Distributed
Fail-Operational Automotive Applications

Philipp Weiss*, Sherif Elsabbahy*, Andreas Weichslgartner! and Sebastian Steinhorst*
*Technical University of Munich, Germany; firstname.lastname @tum.de
tAUDI AG, Germany; andreas.weichslgartner @audi.de

Abstract—Enabling fail-operational behavior of safety-critical
software is essential to achieve autonomous driving. At the same
time, automotive vendors have to regularly deliver over-the-air
software updates. Here, the challenge is to enable a flexible and
dynamic system behavior while offering, at the same time, a
predictable and deterministic behavior of time-critical software.
Thus, it is necessary to verify that timing constraints can be met
even during failover scenarios. For this purpose, we present a
formal analysis to derive the worst-case application failover time.
Without such an automated worst-case failover timing analysis,
it would not be possible to enable a dynamic behavior of safety-
critical software within safe bounds. We support our formal
analysis by conducting experiments on a hardware platform using
a distributed fail-operational neural network. Our randomly
generated worst-case results are as close as 6.0% below our
analytically derived exact bound. Overall, our presented worst-
case failover timing analysis allows to conduct an automated
analysis at run-time to verify that the system operates within the
bounds of the failover timing constraint such that a dynamic and
safe behavior of autonomous systems can be ensured.

I. INTRODUCTION

With the rapid development of new functionalities to achieve
autonomous driving the automotive industry sees itself con-
fronted with increased safety requirements. Ensuring a fail-
operational behavior is critical to enable autonomous driving
as there will be no fallback solution without a driver in a failure
scenario. After a critical failure the system is unable to react
until the recovery is completed. Safety-critical applications
have to fulfill strict timing requirements that also have to be
met during such a failover.

To deal with increased complexity, electronic architectures
and software systems are currently undergoing major changes.
Instead of adding new electronic control units (ECU) for
each new functionality, software is being integrated on more
powerful central computers. Furthermore, new customer de-
mands to regularly deliver the latest functionality requires
automotive vendors to offer over-the-air software updates. One
of the challenges with regular updates and customized software
systems is to find a suitable and optimized mapping for all
applications [1].

As a consequence, a dynamic resource management is
required, where the mapping problem is solved at run-time as
part of a software platform. A dynamic resource management
allows both to integrate new applications at run-time and
to repurpose resources to react to critical failures. With a
dynamic resource management, safety-critical applications can
be restarted after the malfunction of its electronic control unit

With the support of the Technische Universitit Miinchen — Institute
for Advanced Study, funded by the German Excellence Initiative and the
European Union Seventh Framework Programme under grant agreement n°
291763.

B(to) ECU e
: |
“o) to to

L p(mg)

5 link 1

: t t
Lty :

: ety

Application graph System architecture

Fig. 1: Representation of our system model with an example
application and system architecture. The green arrows indicate
the active bindings of tasks tp and ¢; and the routing of
message mg, while the dashed yellow arrows indicate the
passive task bindings.

on a still functional ECU. Here, graceful degradation can be
used by shutting down non-critical applications on this ECU
to free sufficient resources for the restarting safety-critical
application. The advantage is that instead of adding costly
additional hardware resources, the existing resources can be
repurposed. [2]

The challenges for such a dynamic system are mainly to
achieve a predictable system behavior. In this context, it is
important that application requirements on the timing behavior
can be verified and that a failover within the Fault Tolerant
Time Interval (FTTI) can be guaranteed. [3]

In this paper, we analyze the impact of a failover on
the timing behavior of distributed fail-operational applications
and derive an upper bound for the worst-case failover time.
The work presented in this paper can be used to evaluate
and verify the worst-case failover timing behavior of fail-
operational distributed applications. Instead of performing
time-consuming experiments, our formal analysis can be used
to evaluate whether a mapping would meet the failover timing
constraints or not such that an evaluation at run-time is
possible. Therefore, we make the following contributions:

o We analyze related work in the fields of timing analysis

and fail-operational automotive systems in Section II.
There is no work yet that has analyzed the timing effects

of a failover on distributed fail-operational applications.

o Based on the application and failover model presented
in Section III, we introduce a formula to derive the
application failover time in Section IV. Here, we analyze
worst case scenarios to derive an upper bound for the
failover time. Our upper bound can be used to achieve
a predictable fail-over behavior and to verify application
requirements on failover constraints.

e We support our formal analysis by conducting failover
experiments on our demonstrator platform using a fail-
operational distributed neural network in Section V.

II. RELATED WORK

In our work we focus on executing a worst-case failover
timing analysis to enable dynamic and safe system behaviour.
Despite the fact that analyzing mapping strategies go beyond
the scope of this work, our work is relevant to mapping in the
sense that its results could be used to evaluate mappings at run-
time. In addition, we use an agent-based mapping approach to
conduct our failover experiments. Hence, the relevant related
literature is mainly that concerned with timing analysis as well
as fail-operational dynamic mapping approaches.

In [4] a fail-operational function-specific E/E-architecture
for brake and steering control is introduced that supports
dynamic configuration. A number of simulations are executed
to derive the requirements for failure detection time and
fault reaction time, against which the presented architecture
is tested. The authors further developed their approach in
[5] by adding a hardware extension to prevent state-loss that
relies on CAN messages to communicate its state and they
integrate the architecture into a service-oriented architecture.
This approach is similar to the one we present since our
architecture relies on communication through service-oriented
middleware. However, we do not rely on extra hardware and
we use periodic Ethernet heartbeat messages to detect the state
of operation of the hardware devices.

In [6], the authors target distributed real-time embedded
systems and aim to provide an automated design process for
software reconfiguration. To approach this task, they define
a number of “mode structures” characterized by a set of
structured component types and each one comprises a number
of configuration instances. The transitions from one instance to
another are triggered by events related to system constraints
or variations to the infrastructure. Our work goes an extra
step further beyond the scope of system reconfiguration and
covers the analysis for the timing behavior of system recovery
in reaction to failures.

The related literature covers also topics such as graceful
degradation in embedded systems, which requires a dynamic
reconfiguration of the system and enables a subset of the
tasks to continue running according to predefined priorities.
In [7], a 2-step methodology is introduced, where the first
step focuses on optimizing the design phase and resource
allocation through degradation-aware reliability analysis. The
second phase involves optimizing the system behavior online
through a proposed algorithm relying on the data structures
generated in the first phase. Our work however does not rely
on design-time configuration. Instead, we propose a recovery
scheme where the redundant software copies are assigned to
hardware units in runtime according to the available resources.

We draw on the work presented in [2] and conduct our
work on a similar platform. In this work a simulation frame-
work for fail-operational systems is presented, in which the
computational resources are dedicated to the higher priority
tasks and thus improving the reliability of the system. The
authors in [8] propose a predictable task migration mechanism
by implementing a migration timing analysis and a feasibility
check for real-time applications. Here, the goal is to enable a
dynamic resource management to adapt the mapping of tasks
at run-time. In our paper, we do not migrate the tasks to
optimize the mapping, but assume that the tasks are already
deployed redundantly such that a direct failover is possible.

None of the work concerned with discussing the timing
properties of safety critical embedded systems has yet covered
the topic of failover timing analysis. Instead, a maximum
threshold for switching to the redundant copies of their ap-
plications is proposed such as presented in [9] or for control
algorithms that guarantee the stability of embedded control
systems on unreliable hardware platforms in a limited amount
of time [10].

III. SYSTEM MODEL

A. Application Model

Our system architecture consists of a set of ECUs e € E
which are interconnected via switches and Ethernet links
Il € L. Our system software consists of a set of safety-
critical applications a € A, where each application a can be
modeled by an acyclic, directed, bipartite application graph.
Each application a consists of a set of tasks ¢ € T" and a set of
messages m € M. For our analysis we assume that each node
has at maximum one predecessor and one successor such that
the application graph builds a task chain.

We assume a valid binding o : T — FE is given which
assigns each active task instance ¢ € T' to an ECU a(t) € E.
For our safety-critical applications a we assume that a redun-
dant passive task instance is available in the system. Here, we
assume a binding 5 : T' — F is given which assigns each
passive task instance t € T to an ECU j(t) € E.

Furthermore, we assume that a routing p : M — 2% is given
which assigns each message m € M to a set of connected links
L’ C L that establish a route p(m). As the routing will also
change after a failover, up to three passive routes are required
of which one will become activated depending on which tasks
are affected by the failover. Figure 1 depicts the application
and system model with an exemplary application consisting of
a task chain with two tasks.

We use the notation £;(a) to define the end-to-end ap-
plication latency of a single iteration i. Using composable
task and communication scheduling, the interference between
tasks and messages can be bounded [11], [12], such that a
worst-case Lq.(a) and best-case application latency Lp.(a)
can be calculated even at run-time. Similar, we define Lp.(t)
and L,..(t) as the best-case and worst-case latency from the
application start until task ¢ has finished execution. We assume
that the application is periodically executed with the period
P, and that the application might operate in a pipeline such
that P, can be smaller than the worst-case application latency

Le(a).

B. Failover Model

We define a failure f € F with F' C E, where f identifies
the failed ECU. To describe the bindings after the j-th failure,
we use the notation «;(t) and S;(t), with ag(t) and Fo(t)
being the initial bindings. A failover is required once an ECU
e fails to which at least one active task instance of a safety-
critical application a has a binding: 3t € T : «;(t) = e. In
a failover scenario we assume that affected task instances are
lost and that tasks are restarted using the passive task instances
such that the active binding of the affected task instances is
changed to the former passive task binding: a1 (t) = 5;(t).
Furthermore, a new binding for the passive task instance
Bj+1(t) has to be found. In a scenario where only a passive
task instance is lost, no restart is required such that the binding
of the active task instance remains the same and only a new
binding for the passive task instance has to be found. Similarly,
one of the passive routing paths between the new active task
instances has to be activated. The new active routing path
p;(m) depends on which tasks are affected by the failover
and is being implicitly updated. To identify the application
latencies after a failure f we use the notations L;(a, f),
Lye(a, f) and Lypc(a, f).

IV. WORST-CASE FAILOVER TIMING BEHAVIOR

With a dynamic resource management that meets mapping
decisions at run-time it is no longer possible to verify every
system constraint at design-time. The timing behavior of
applications is heavily influenced by timing interference from
other applications which is unknown at design-time and can
change once applications are updated and new functionality is
added to the system.

To enable such a dynamic resource management even for
safety-critical applications, it is crucial to automatically verify
critical system aspects at run-time. In this context, an auto-
mated worst-case failover timing analysis is important, which
allows to set bounds on the dynamic system behavior when
meeting mapping decisions in order to achieve a deterministic
and predictable system behavior. Even though our research
focuses on automating the failover analysis to achieve dynamic
system behavior, our equation can be also used to automati-
cally evaluate the failover timing behavior at design-time such
that multiple different mapping configurations can be explored.

To achieve such a predictable failover timing behavior, we
first define the application failover time F(a, f) in Subsection
IV-A. Afterwards, we present an upper bound and approach
to derive the worst-case application failover time Fy,.(a, f) in
Subsection IV-B. Step by step, we first introduce the worst-
case recovery time in Subsection IV-C, which has a major
influence on the worst-case application failover time. Then,
we analyze a single task failover scenario in Subsection IV-D
until we finally derive a generalized formula for the worst-case
application failover time in Subsection IV-E, where multiple
tasks might be affected by the failover.

A. Application Failover Time

In a flawless operation mode, an application will period-
ically produce output data with the period P,. Since the
application latency is not constant and might differ between
two consecutive iterations 7 and ¢ + 1, we can calculate the

A

\4

. AO(a)
AOy)(a)

AO(a)

AOy(a) F(a,f)

Fig. 2: Depiction of the application failover time: The vertical
lines indicate the output time of the corresponding iteration,
while the dashed vertical lines depict the latest output time
that would be tolerated.

output time difference between two application outputs in a
failure-free operation as AO(a) = P, + (Lit1(a) — Li(a)),
where £;y1(a) and L;(a) are the corresponding end-to-end
application latencies of the iterations 4 and ¢ + 1.

Therefore, the maximum delay that can be tolerated after an
iteration ¢ would be if it took the worst-case latency L,,c(a) to
execute iteration 7+ 1 such that the maximum tolerated output
delay for the current iteration ¢ can be calculated as

AOysoi(a) = Py + (Lue(a) — Li(a)). (1)

However, when a task failure occurs, the application might
take longer to produce a valid output, such that we define
AO(a, f) as the output delay during a failover scenario with

AO(a, f) = Pa+ Ni(a, f) - Pa + Liya1(a, f) = Li(a). (2)

Here, Ny(a, f) - P, describes the additional time delay due to
iterations that are lost or missed due to failure and recovery
time effects as the application is not able to operate during the
downtime. Furthermore, £;1(a, f) is the application latency
of the next valid iteration i + 1 after the failover with the new
active task bindings.

With this we can define the application failover time F(a, f)
as the time window between the point in time where a delay
under a failure-free operation would not be tolerated any more
until the point in time where a new output is available after
the recovery:

Fla, f) = AO(a, f) — AOui(a). 3)

From Equation 3 it can be observed that if AO;,; > AO(a, f),
the failover time F(a, f) might be masked by AOy,; and not
observable at the application output at all. Putting Equations
1 and 2 into Equation 3 we obtain the failover time:

]:(a’f):Nt(avf)'Pa+£i+1(aaf)_£wc(a)~ “4)

Figure 2 depicts the relation between the application failover
time F(a, f), the output delay AO(a) and the maximum
tolerated output delay AO;,;(a). Here, a failure occurs after
iteration 2, such that one frame is missed, causing the output
delay to exceed the tolerated delay.

B. Worst-Case Application Failover Time

Our goal is to derive an upper bound for Equation 4 to
achieve a predictable failover behavior of the application.
In a worst-case scenario L;11(a, f) from Equation 4 would
be equal to the worst-case latency Lc(a, f). Furthermore,
we have to identify the worst-case number of iterations
N wela, f) that are lost during the failover, such that we can
calculate the worst-case application failover time as

]:wc(ayf) :Nt,wc(a7f) 'Pa+£wc(a7f> _ﬁwc(a)- (5)

Using this equation we can observe that a change to a
lower worst-case latency L,,.(a, f) after a failure can in fact
have a positive effect on the worst-case failover time as the
next iteration after a failure would be able to propagate faster
through the complete task chain and, therefore, reach the
output earlier than expected beforehand.

For the total number N y.(a, f) of lost frames, we dis-
tinguish between the iterations Nj ,.(a, f) that are lost im-
mediately as they were currently held by a task that was
affected directly by the failover and the iterations that are
missed N, c(a, f) due to the system recovering too slow
such that potential inputs are missed by the tasks:

Nt,wc(a'a f) = Nl,wc(a7 f) + Nm,wc(a'a f) (6)

However, before we can derive N ,.(a, f) we have to
introduce the worst-case recovery time 7,.(¢, f) which is re-
sponsible for the number of iterations N, ,c(a, f) that will
be missed due to task recovery. Afterwards, we are presenting
an analysis to calculate N, ,.c(a, f) in a simplified scenario
where only a single task is affected directly by the failover
and then generalize the formula for multiple recovering tasks.

C. Worst-Case Task Recovery Time

We define 7,.(t, f) for a failover f as the worst-case time
frame that it takes from the occurrence of a failure until a
task ¢ is ready to receive and process the next input after
recovery. Our definition of the recovery time is based on our
system that is using a service-oriented middleware with a
publish/subscribe pattern. Here, we make the case distinctions
as presented in Equation 7, which can be found below.

For a task ¢t it holds that 7,.(¢, f) = O if neither its active
task binding nor the active task binding of its predecessor is
affected by the failover.

For the case that a task is affected directly by the failure
and has to be restarted, the passive task instance has to detect
the failure. In the following, we assume that the worst case
failure detection time 74 is equal for every failure and every
ECU. After detecting the failure, the task has to subscribe to its
predecessor in order to receive its message, where we assume
a worst case subscription time T, resulting in 7.(¢, f) =
Td + Tsub-

In case a predecessor task p(t) is affected by the failover
and not the task itself, the active task instance has to wait until
the preceding task has restarted and sent a message to offer the
service while the task itself has to wait to detect the failure
until it can finally subscribe. 7..(¢, f) = max(7.(p(t), f) +
Toff» Td) + Tsub-

In case a predecessor task p(t) and the task ¢ itself is af-
fected by the failover, the task has to detect the failure and wait
until the offer service message has arrived until it can subscribe
just as in the previous case. With 7,.(p(t), f) + Torf > 74, We
can then further simplify the formula for the last two cases
to 7,.(t, f) = 7 (p(t), f) + Toss + Tsup. With the worst-case
recovery time it is now posible to derive the worst-case number
of iterations that are lost during a failover.

D. Single Task Failover Scenario

In a scenario where only a single task is affected directly by
a failure, the worst point in time where the most iterations are
lost is when the affected active task instance has just finished
the execution and the frame [y is lost together with the task
such that for a single failing task Nj ,.(¢, f) = 1.

If the passive task instance that is being started is able to
recover on time 7.(¢, f) before the following frame m(has
reached p(t) no additional frame will be missed. Otherwise at
least one additional frame mg will be missed depending on
how fast the task is able to recover 7..(¢, f).

To calculate the earliest point in time 7,,,, where mg would
reach the predecessor the end of the predecessor p(t) of task
t, we have to know how far the next frame mg was behind the
lost frame [. The frames start with a time difference of exactly
P,. In the worst case, it took the lost frame [the worst-case
latency L,.(t;) to reach the output of the task, such that the
following frame mg had the most time to minimize the time
distance between them. In turn, mg would in the worst case
propagate with the best-case latency Lp.(p(t)) such that we
can calculate 7,,, as

Tmg = P, + ﬁbc(p(t)) - ‘ch(t)- (8)

We assume that in the worst case every following frame m;
would propagate with the best case latency and therefore be
exactly behind by P, to the previous frame m;_1:

Vi>0:Tp, =Tm, , +Fa 9)

With this we can make the following case distinction for
the worst-case number of missed frames:

Tmo > Tr(ta f)
Ting < Tr(ts f)

If the frame m(would reach the end of p(t) before the task ¢
has recovered with the worst-case recovery time 7,.(¢, f), then
mg will be missed. As the following frames follow m(by
P, in the worst case, an additional number of L%J
frames will be missed until the recovery is completed.”

(10)

14 [T

0
N’m,wc(ta f) - {

E. Multi Task Failover Scenario

For a scenario where multiple tasks have to recover, more
than one frame might get lost immediately due to the failure
if the application is using pipelining. In the following, we
denote task ¢; as the last task and ¢, as the first task in the
chain that has to recover. We assume that any frames that at
the point of failure were between the predecessor task p(ty)
of ty and ¢; are immediately lost. In the worst case, at least
one frame [is lost at ¢;, which just has completed execution
with the corresponding frame. To understand how many other
frames between p(t;) and ¢; are lost, we have to make similar
considerations as in Subsection IV-D. The most frames are lost
if the frame [y at ¢; propagated with the worst case latency
and the following frames propagated with the best case latency.
Therefore, if [; propagated faster to p(t ;) with P+ Ly (p(ts))
than it took for lo to reach the end of t; with L,,.(¢;), at least

0 aj+1(t) = a;(t) A eyt1(p(t)) = a;(p(t))
oty f) = Td + Tsub ajy1(t) = B () A ajr1(p(t)) = aj(p(t)) o
o Tr(P(),) + Tops + Tsub aj+1(t) = () A a1 (p(t)) = B (p(1))
Tr(P(), f) + Tofs + Tsuv aj1(t) = B5(8) A aj1(p(t)) = B;(p(t))
4
28|] 32 I]
24T i 32 A
20 |- 1 A A A A
=) 16 |- AAZA | = 28 |- A A N A AA N
-~ 121 L B0, A = 24 A~ Cb D NS s
2 A > N
i/ 8 =N AL a A . i’ 201 2 N Ba A a
4l | 16 [s
O | |].2 [|
—4 ! \ \ \ i 51 ! ! ! ! |
6 8 10 12 14 16 6 8 10 12 14 16
AR AR

(a) Failover scenario with failure of ¢s.

(b) Failover scenario with failures of ¢ and ¢7.

Fig. 3: Experimental results with L.(a) = 16.5s, Lyc(a, f) = 19s, 7-(¢, f) = 7.5s. Measurements with a random failure
time are marked with green circles, while the worst-case failover measurements are marked with blue triangles. The red curve
representing our worst-case analysis is a strict bound that is not exceeded by any measurement. The results are as close as

6.0% below our analytically derived exact bound.

one additional frame is immediately lost during the failure.
Therefore, we define

T, = P, + Ebc(p(tf)) - ‘ch(tl) (11)

as the time where [; would reach the end of execution at
p(ty). Similar as before, all following frames [; are following

their predecessor by P,:
Vi>1l:1, =1

+ P, (12)

i—1

If 7, is positive, which means {; reached p(ts) after the
failure event, no other frame than [y is lost. Otherwise [y
and possibly other frames are lost. Thus, we can calculate
the number of lost frames as

Nl(avf): {;""L Tl1J

We assume that Vt € T : Tsup + Toff < lepe(t,alt, f)) +
lebe(Min, p(Min, f)), such that the system is dominated by
the failover of the first task ¢y in the chain that failed. This
means if ¢y has recovered, we assume that all following tasks
in the chain are able to recover on time such that no additional
frames are lost except the frames N,,(ts, f) missed by t.

T, >0

o (13)

Tmo(tfvf): 7f)7

Here, we can reuse Equation 10 to calculate Ny, wc(ts, f)
with 7, (tf, f), such that we can calculate the worst-case
number of missed frames. By combining and simplifying the
complete formula for N¢(a, f) we obtain

(Ni(a 1)- P, + 1, (14)

7 (t, f) + Luwe(tr)
P,
By putting Equation 15 into Equation 5 we can finally derive

the generalized formula to calculate the worst-case application
failover time.

— Loe(p(ty))

Ni(a, f) = | |+1. @15

V. EXPERIMENTS

In the following we present the results of our experiments
conducted on a demonstrator setup to support our worst-case
failover analysis using a fail-operational distributed neural net-
work. In a usual system setup we would assume that multiple
distributed applications are running at the same time. Here,
our analysis can be applied for each application individually as
long as worst-case and best-case latencies can be determined.

A. Testing Setup

For our experiments we use a setup consisting of 3
Rasperry-Pi 4B devices, with 8GB RAM and a quad-core
Cortex-A72 with maximum frequency of 1.5 GHz. We chose
a YOLOV3-tiny neural network implementation as our test
application, which is a simplification of the structure used for
object detection described in [13]. The neural network runs
on Tensorflow-CPU as a backend and uses the Keras API. We
split the neural network between the layers into 5 different
tasks, with extra tasks for pre- and postprocessing adding
up to 7 tasks in total. Through splitting the neural network
and introducing it into our framework, a pipeline for the
application arises, which improves the overall throughput of
the neural network by adding more computational power. We
use a star-topology network using a switch and TCP Ethernet
connections for the communication between the devices. Our

analysis can be also applied to more complex architectures
as long as the latencies for the message routings can be
determined, which we assume as given for our approach. The
Raspberry-Pis use a service-oriented communication middle-
ware based on the SOME/IP standard with a publish/subscribe
pattern [14]. Our framework allows to simulate ECU failures,
by shutting down the framework instances on a Raspberry-Pi.
Failures are detected via heartbeats and timeouts.

B. Failover Timing Measurements

For our experiments we obtain the application failover time
F(a, f) by measuring the output delay AO(a, f) during a
failover, while the tolerated output time interval AOy;(a) can
be calculated. Figure 3 presents the failover time of multiple
experiments with a randomly varying application period P,
of a single task failure scenario (Figure 3a) and a multi-
task failure scenario (Figure 3b). Experiments with a random
failure time are marked with a green circle. Furthermore, we
provoked worst-case scenarios by shutting down the ECU at
the worst-case point in time, where results are marked with
blue triangles. Some of the factors that cause the failover
time to fluctuate are the varying recovery time and application
latencies. A negative failover time implies that the failover
occurred within the tolerated output interval AO;,(a) such
that no negative impact on the application timing behavior is
observable. We used our worst-case analysis from Section IV
obtain a strict upper bound which is plotted as the red curve.

Most importantly, we can observe that none of the measure-
ments exceed the upper bound. Our randomly generated worst-
case results are as close as 6.0% below our analytically derived
exact bound. Note that by conducting more experiments,
the measurements would come even closer. Furthermore, it
can be observed that the blue worst-case measurements also
result in higher failover times than the random measurements
marked in green. Comparing Figure 3a with Figure 3b, we
can examine that a failure, where multiple tasks are affected,
overall leads to to a higher failover time as intuitively expected.
Another interesting examination is that the upper bound builds
a sawtooth-like curve with a decreasing slope with every step.
With an increasing period FP,, the worst-case failover time
increases linearly with a slope that is determined by the total
number of lost iterations as described in Equation 5. However,
as the system gains more time to recover with an increasing
P,, it will at one point loose one iteration less causing a step
and a decreased slope. As a consequence, a slight period offset
close to a step might have a big impact on the worst-case
failover time.

Overall, the results show that our prediction of the worst-
case failover time has adequately estimated an upper bound
for the failover time experienced by the system.

VI. CONCLUSION

In this paper we have introduced a formal analysis to derive
the worst-case failover time for fail-operational distributed
automotive applications. Our upper bound allows to conduct
an automated worst-case analysis to evaluate mappings at run-
time. This way, unfeasible mappings can be identified and
excluded such that a safe operation of safety-critical software
within the bounds of the fault-tolerant timing interval can be

guaranteed. We conducted experiments with a distributed fail-
operational neural network on our hardware setup using an
agent-based software platform, where we provoked worst-case
failure scenarios to measure the failover time. Our randomly
generated worst-case results are as close as 6.0% below our
analytically derived exact bound.

In future work we will extend our analysis for applications
with parallel paths in the application graph. Furthermore, we
are planning to use the worst-case failover analysis to conduct
automated mapping decisions at run-time using an agent-based
mapping mechanism.

Summarized, our presented worst-case failover timing anal-
ysis allows to conduct an automated analysis at run-time
to verify that the system operates within the bounds of
the failover timing constraint such that a dynamic and safe
behavior of autonomous systems can be ensured.

REFERENCES

[1] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf, “Future
automotive systems design: Research challenges and opportunities:
Special session,” in Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2018.

[2] P. Weiss, A. Weichslgartner, F. Reimann, and S. Steinhorst, “Fail-
operational automotive software design using agent-based graceful
degradation,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), 2020.

[3] T. Frese, T. Leonhardt, D. Hatebur, I. C6té, H. Aryus, and H. M.,
“Fault tolerance time interval,” in Proff H. (eds) Neue Dimensionen der
Mobilitdt, 2020.

[4] F. Oszwald, J. Becker, P. Obergfell, and M. Traub, “Dynamic reconfig-
uration for real-time automotive embedded systems in fail-operational
context,” in 2018 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), 2018, pp. 206-2009.

[5] F. Oszwald, P. Obergfell, M. Traub, and J. Becker, “Reliable fail-
operational automotive e/e-architectures by dynamic redundancy and
reconfiguration,” in 2019 32nd IEEE International System-on-Chip Con-
ference (SOCC), 2019, pp. 203-208.

[6] F. Krichen, B. Hamid, B. Zalila, and B. Coulette, “Designing dynamic
reconfiguration for distributed real time embedded systems,” in 2010
10th Annual International Conference on New Technologies of Dis-
tributed Systems (NOTERE). 1EEE, 2010, pp. 249-254.

[71 M. GlaB, M. Lukasiewycz, C. Haubelt, and J. Teich, “Incorporating
graceful degradation into embedded system design,” in Proceedings of
the Conference on Design, Automation and Test in Europe. 1EEE, 2009.

[8] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich, “Real-
Time Task Migration for Dynamic Resource Management in Many-Core
Systems,” in Workshop on Next Generation Real-Time Embedded Sys-
tems (NG-RES 2020), ser. OpenAccess Series in Informatics (OASIcs),
vol. 77. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2020, pp.
5:1-5:14.

[9]1 A. Sinha, A. Karmakar, B. Bhattacharya, S. Bhattacharya, and S. Ray,
“Architecture of a fault tolerant system for real time embedded applica-
tions,” in ICCSC’02. Ist IEEE International Conference on Circuits and
Systems for Communications. Proceedings (IEEE Cat. No.02EX605),
2002, pp. 194-197.

[10] D. Goswami, D. Miiller-Gritschneder, T. Basten, U. Schlichtmann, and
S. Chakraborty, “Fault-tolerant embedded control systems for unreliable
hardware,” in 2014 International Symposium on Integrated Circuits
(ISIC), 2014, pp. 464-467.

[11] B. Akesson, A. Molnos, A. Hansson, J. A. Angelo, and K. Goossens,
Composability and Predictability for Independent Application Develop-
ment, Verification, and Execution. New York, NY: Springer New York,
2011, pp. 25-56.

[12] A. Weichslgartner, S. Wildermann, D. Gangadharan, M. GlaB}, and
J. Teich, “A design-time/run-time application mapping methodology for
predictable execution time in mpsocs,” ACM Trans. Embed. Comput.
Syst., vol. 17, no. 5, 2018.

[13] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[14] Scalable service-Oriented MiddlewarE over IP (SOME/IP), 2020.
[Online]. Available: http://some-ip.com/

