
Checkpointing Period Optimization of Distributed
Fail-Operational Automotive Applications

Philipp Weiss∗, Emil Daporta∗, Andreas Weichslgartner† and Sebastian Steinhorst∗
∗Technical University of Munich, Germany; firstname.lastname@tum.de

†AUDI AG, Germany; andreas.weichslgartner@audi.de

Abstract—Achieving a cost-efficient fail-operational behavior
of safety-critical software is crucial for autonomous systems.
However, most applications hold a state such that a checkpoint
is required to enable a safe recovery. Here, the challenge is
to find the maximum possible checkpointing period while mini-
mizing network and computational overhead. For this purpose,
we present an approach to analytically derive the maximum
checkpointing period by giving an upper bound on the number
of missed computational steps due to failure effects. Worst-case
results of our case study using a SLAM application are consistent
with our analytically derived exact bound. Overall, by using our
approach, a maximum achievable checkpointing period can be
determined to reduce network overhead in order to achieve a
cost-efficient and safe behavior of autonomous systems.

I. INTRODUCTION

With the rapid development of new functionalities to
achieve autonomous driving, the automotive industry sees itself
confronted with increased safety requirements. Ensuring a
fail-operational behavior is indispensable to achieve a safe
behavior of autonomous systems. With a dynamic resource
management, safety-critical applications can be restarted after
the malfunction on a still functional electronic control unit
(ECU). Here, graceful degradation can be used by shutting
down non-critical applications on this ECU to free resources
for the restarting safety-critical application. Instead of adding
costly additional hardware resources, the existing resources
can be repurposed [1].

However, a major challenge is that most applications have a
state that might get lost during a failure such that a recovery
might be impossible. Thus, in a system with passive redundancy,
periodic checkpointing with rollback recovery can be used to
send the state to another ECU, where the application can
be restarted after a failure. Here, the challenge is to find a
suitable checkpointing period such that application-specific
constraints on the state data age are met and the network
and processing overhead caused by sending the checkpoint is
minimized. However, as it might take the system some time
to recover from the failure, the state data also ages during the
downtime such that the worst-case state data age can not only
be determined by the checkpointing period.

As the implications of the state data age are application-
specific, we use a Simultaneous Mapping and Localization
(SLAM) algorithm, an application commonly used in au-
tonomous systems such as robots or self-driving cars, as a
real-world example to determine the effects on the quality of
the application. Using the SLAM algorithm, a moving object
creates a global map of its current environment and uses this
map to navigate or deduce its position and orientation. In the

System	architecture

t0

m0

t1

t0 t0

t1t1

Application	graph

link	l

ECU	e

Pa

Pc

Figure 1: Representation of our system model with an example
application and system architecture. The green circles indicate
the active bindings of tasks t0 and t1, while the yellow circles
indicate the passive task bindings. The message m0 is sent
periodically with the period Pa. A checkpoint is sent from the
active task instance of t1 to its passive task instance with the
checkpointing period Pc.

following, we refer to automotive terminology, although the
work is also applicable for other safety-critical autonomous
systems. The work presented in this paper can be used to
determine the maximum checkpointing period at which a safe
operation within the bounds of the maximum allowed state
data age is still possible. Therefore, we make the following
contributions:
• We analyze related work in the fields of fail-operational

systems and checkpointing approaches in Section II.
• After introducing our application and failover model in

Section III, we present our checkpointing approach in
Section IV. Here, we formally introduce the checkpoint-
ing period and the achievable overhead reduction. By
identifying components that influence the data age of a
task we derive an upper bound for the worst-case data
age. Using a state data age constraint we then derive the
maximum possible checkpointing period that minimizes
our network and processing overhead.

• In a case study we show the dependency between state
data age and accuracy of an SLAM algorithm as a real-
world example in Section V-B. Furthermore, we show



the applicability of our formal analysis by conducting
failover experiments on our demonstrator setup with an
agent-based software platform using the fail-operational
distributed SLAM algorithm. Worst-case results of our ran-
domized experiments are consistent with our analytically
derived exact bound.

II. RELATED WORK

The authors in [1] present an agent-based approach to find
mappings of active and passive tasks at run-time to achieve a
gracefully degrading system behavior. We use a similar platform
to conduct our experiments but consider the mapping approach
as given. Our work could be used complementary to evaluate
different mappings at run-time or at design-time in order to find
a mapping where the checkpointing period can be maximized.

The authors in [2] propose a predictable task migration
mechanism by implementing a migration timing analysis and a
feasibility check for real-time applications. Here, the goal is to
enable a dynamic resource management to adapt the mapping
of tasks at run-time. In our paper, we do not migrate the tasks
to optimize the mapping, but periodically send a checkpoint
containing state information.

The work of [3] proposes a lightweight architecture in order
to avoid an overly redundant setup and addresses the challenge
of a verifiable, fail-safe safety implementation for trajectory
planning. In contrast to their example with low-level prediction
models applied to a real-world situation, we show an EKF-
SLAM algorithm integrated in our platform.

The authors in [4] investigate the approach of dynamical
reconfiguration and propose a hardware extension integrated
in the architecture to prevent the system from loss of state
when communicating with peripherals. However, this approach
does not cover restarting entire backup tasks on other ECUs.
Furthermore, we assume that the applications tolerate a
deviation in state data age such that the checkpointing period
can be varied and optimized.

In [5], a solution to minimize checkpoint overhead is
presented. This can be reached by tailoring the checkpoint
interval on the failure probability instead of taking a checkpoint
periodically. The authors in [6] propose a solution to reduce
lost messages due to server failures by reducing the cost of
checkpointing, cost of rollback and total time cost of overheads
due to the fixed checkpointing intervals. However, none of the
two methods performs the checkpoint interval optimization
based on a worst-case analysis of the recovery time. By contrast,
our method ensures that a maximum given data age of the
checkpoint data is never exceeded and optimizes the checkpoint
accordingly. Violating this data age constraint would lead to
an unsafe behavior of the system.

The work of [7] presents an approach of the synthesis of fault-
tolerant hard real-time systems for safety-critical applications
based on checkpointing with rollback recovery and active
replication. However, the approach does not consider alternating
the checkpoint period such that our method could be used
complementary.

The authors in [8] present a formal analysis for deriving
the worst-case failover time of distributed applications. We

use parts of this analysis for deriving the missed number of
computational steps to calculate the optimal checkpointing
period.

In summary, although there is literature that has considered
alternating the checkpointing period, none has used a worst-
case analysis of the failure and recovery time to obtain an
optimal checkpointing period. Thus, existing approaches are
unsuitable to ensure a fail-operational behavior within safe
bounds when optimizing the checkpointing period.

III. SYSTEM MODEL

A. Application Model

Our system architecture consists of a set of ECUs e ∈ E
which are interconnected via switches and Ethernet links
l ∈ L. Our system software consists of a set of safety-
critical applications a ∈ A, where each application a can
be modeled by an acyclic, directed, bipartite application graph.
Each application a consists of a set of tasks t ∈ T and a
set of messages m ∈ M . For our analysis we assume that
each node has at maximum one predecessor and one successor
such that the application graph builds a task chain. Tasks are
communicating using a service-oriented middleware with a
publish/subscribe pattern, which allows a dynamic adaptation
of the system e.g. in the event of ECU or task failures.

We assume that a valid binding is given for both the active
and passive redundant task instances. Furthermore, we assume
that a routing is given which assigns each message m ∈M to a
set of links. As the routing will also change after a failover, up
to three passive routes are required of which one will become
activated depending on which tasks are affected by the failover.
Figure 1 depicts the application and system model with an
exemplary application consisting of a task chain with two tasks.

We use the notation Li(a) to define the end-to-end ap-
plication latency of a single iteration i of the application a.
Using composable task and communication scheduling, the
interference between tasks and messages can be bounded, such
that a worst-case Lwc(a) and best-case application latency
Lbc(a) can be calculated even at run-time [9], [10]. Similar,
we define Lbc(t) and Lwc(t) as the best-case and worst-case
latency from the application start until task t has finished
execution. We assume that the application is periodically
executed with the period Pa.

B. Failover Model

We define a failure f ∈ F with F ⊆ E, where f identifies
the failed ECU. A failover is required once an ECU e fails
to which at least one active task instance of a safety-critical
application a has a binding. In a failover scenario we assume
that affected task instances are lost and that tasks are restarted
using the passive task instances. Similarly, one of the passive
routing paths between the new active task instances has to be
activated.

IV. CHECKPOINT OPTIMIZATION

Since distributed systems are susceptible to failure, tech-
niques to add reliability and high availability were devel-
oped. The usage of checkpoints is a technique to ensure



the fail-operational behavior of safety-critical applications in
autonomous vehicles. By sending checkpoints over the network
in distributed systems, states of the process can be saved during
the failure-free execution. These checkpoints can be used after a
failure and reloaded on an other ECU to continue the execution
of safety-critical tasks. Restarting the computation of tasks
from an older saved state is called rollback recovery. A system
recovers correctly when its internal state is consistent with its
observable behavior before the failure [11]. In the following we
use the notation Pc(t) to describe the checkpointing period of
a task t that is periodically transferring its state from an active
task instance to a passive task instance residing on another
ECU.

The proper checkpoint period is a trade off between network
and processing overload and fail-safe recovery. Generating a
checkpoint after every computational step ensures a higher
probability of being able to recover from a failure properly.
On the other hand, this would not only cause an overload of
the network by forwarding the checkpoints to the passive tasks
scheduled on the associated ECUs, but also occupies processing
resources. Therefore, increasing the checkpointing period is
desirable to minimize both network and processing overhead. In
order to obtain the maximum achievable checkpointing period
Pc,max(t) we are first introducing a formal definition of the
checkpointing period and the achievable overhead reduction
in Subsection IV-A. Afterwards, we introduce the data age
in Subsection IV-B. By analyzing components that influence
the data age we derive an analytical bound for the worst-case
data age in Subsection IV-C. Based on this upper bound we
present the formula to derive the maximum checkpointing
period Pc,max(t) in Subsection IV-D.

A. Checkpointing Period

We define the default checkpointing period as Pc,d = Pa in
which case a checkpoint is taken after every single computation
and sent to a passive backup task. Furthermore, we define that
the checkpointing period Pc can only be a multiple n ∈ N of the
default checkpointing period Pc = n · Pc,d, which corresponds
to a checkpoint taken after each n-th computation. Increasing
the checkpointing period as much as possible is desired as
this would minimize the computational and networking effort
spent on taking and sending the checkpoint to the passive
backup task. In general, increasing the checkpointing period
by the factor n results in an overhead reduction of n−1

n as the
checkpoint is only sent every n-th application period Pa. As
an example, when increasing the default checkpointing period
from Pc = Pc,d to Pc = 5 · Pc,d, a reduction of 80% of the
networking and processing overhead caused by checkpointing
can be achieved.

B. Data Age

However, the checkpointing period can not be increased
indefinitely, otherwise no checkpoint would be required. If a
failure occurs in the system and a passive backup task starts
computing with the checkpoint data, the state data has already
aged. We define the data age d(t) ∈ N as the number of
computational steps that the data is behind when computing

the next output. Under normal operating conditions a task would
compute the next output using its internal state data, which is
getting updated after every execution such that d(t) = 1. Using
a checkpoint instead, the data is in the worst case behind by
n computational steps, resulting in a data age of d(t) = n.

C. Worst-Case Data Age

The state data age d(t) can not only increase with an
increasing checkpointing period, but also due to failure and
recovery time effects. After the failure of an active task,
the passive backup task can not immediately start the next
computation. The failure detection takes time and additionally
the task might have to perform recovery steps until it is able
to continue computing as usual. In our system setup we use
heartbeats combined with timeouts to detect failures. Here, we
assume that the worst-case failure detection time τd is equal for
every ECU failure. For the remaining recovery the tasks might
have to re-publish their data and re-subscribe to preceding tasks
in the application tree using the service-oriented middleware.
An upper bound for the detection or subscription time can be
found by using a composable system, which is well-described
in related work [9], [10]. In the following we refer to τr(t, f) as
the worst-case recovery time that it takes from the occurrence
of a failure f until a task t is ready to receive and process the
next input after recovery, which includes the worst-case failure
detection time and publish and subscription times as described
in more detail in [8].

During the downtime of a task represented by the recovery
time, it might miss one or multiple periodic inputs. In the
worst case the active task instance just finished processing
but is not able to send out the checkpoint in time, which
causes the data at the passive task instance to be behind by
an additional computational step. Afterwards, it might take
some time for the passive task instance to recover until it is
able to receive and process the next input. During this time
it might miss additional inputs such that the data ages even
further. Looking at the worst case, there will be always at
least one additional computational step missed when the active
task instance just finished the execution and was about to send
the next checkpoint. The authors in [8] present an analysis to
derive the worst-case failover time for distributed applications.
The failover time itself does not play a role for designing
the checkpointing period. However, the work also includes an
upper bound Nt(a, f) for the missed computational steps for a
scenario where multiple tasks of an application a are affected
at once by the failure f of an ECU, which is calculated as

Nt(a, f) = bτr(t, f) + Lwc(tl)− Lbc(p(tf ))

Pa
c+ 1. (1)

This bound considers the worst-case recovery time τ(r, f),
but also the worst-case latencies Lwc(tl) and best-case latencies
Lbc(p(tf )) of latencies of the affected tasks. The formula also
directly reflects that in the worst case the loss of at least one
iteration is unavoidable. By repurposing this analytical bound



Po
si

tio
n

y

Position x
(a) With an ideal recovery, no large impact on the deviation of the
estimated trajectory to the real trajectory can be observed.

Po
si

tio
n

y

Position x
(b) A faulty re-detection of an already recognized landmark after
recovery leads to a high deviation of the estimated trajectory to the
real trajectory.

Figure 2: Ideal and non-ideal recovery after a failure in a simulation run with the EKF-SLAM algorithm. The blue curve is
the real trajectory starting at (0,0), while the red curve is the trajectory estimated by the EKF-SLAM algorithm. Black stars
represent real obstacle positions while green crosses represent the estimated object position. The green triangle corresponds to
the last checkpoint taken before the failure, the red circle to the failure time and the blue square to the first computation after
recovery using the checkpoint as the last recorded position. As the first computation after recovery has a larger deviation, the
algorithm jumps a bit backwards.

we can calculate the worst-case data age of a task after a
failover as follows

dwc(t) =
Pc

Pc,d
+Nt(a, f) = n+Nt(a, f). (2)

We are using this formula to evaluate the effect of the
checkpointing period and the application period on the data
age of a SLAM applicaton in Subsection V-C. We can observe
that the factor n linearly influences the worst-case data age,
while Nt(a, f) acts as an offset for a given system architecture
and given task mappings.

D. Maximum Checkpointing Period

The question that arises and which plays a major role in
finding an optimal checkpointing period is which worst-case
data age dwc(t) can be tolerated by a task t. In the following
we refer to dmax(t) as the maximum data age that a task
t can tolerate. This maximum data age is highly application-
dependent and has to be found individually for each application
and task as it directly influences the functionality of the
underlying algorithms. We will derive such an exemplary data
age constraint dmax(t) in our case study using application-
specific metrics in Subsection V-B.

Using the number of computational steps Nt(a, f) that
will be missed in the worst-case due to the failure and
recovery effects together with a data age constraint dmax(t)
we can obtain the maximum achievable checkpointing period
Pc,max(t), which is the goal of this paper, as

Pc,max(t) = (dmax(t)−Nt(a, f)) · Pc,d. (3)

This period minimizes the network and processing overhead
caused by the checkpoint messages as it exhausts the available
data age limit dmax(t) under consideration of the failure and
recovery time effects. It can be observed that an increase of the
checkpointing period is only possible if the tasks can tolerate
the missed computational steps due to failure and recovery
time effects. In case dmax(t) < Nt(a, f), the system setup
would already violate the data age constraint with the default
checkpointing period. Therefore, a fast failure detection and
recovery is a critical aspect when optimizing the checkpointing
period. We are using Equation 3 to calculate the maximum
achievable checkpointing period on our demonstrator setup in
Subsection V-C for the data age constraint dmax(t) obtained
in Subsection V-B.

V. CASE STUDY: SLAM APPLICATION

To evaluate the applicability of our checkpoint optimization
approach introduced in Section IV, we present a case study
using a SLAM application as a representative real-world
application from the autonomous systems domain. Determining
a suitable upper bound for the data age is always application-
dependent and should also consider the impact on the safety of
the application e.g. by considering application-specific metrics.
We first introduce the SLAM application in Subsection V-A
and present the effect of a successful and a faulty recovery.
Afterwards, we examine the dependency between state data
age and accuracy by defining our metrics in Subsection V-B.
Here, using a quality analysis we define an exemplary upper
bound for the data age dmax(t) that should not be exceeded.
Furthermore, we perform failover experiments and calculate the
corresponding worst-case data age dwc(t) as an upper bound in



0 0.5 1 1.5 2

0

0.25

0.5

0.75

1

δ

∆
ē

2 5 9 12 19

(a) Simulation results for the data ages 2, 5, 9, 13 and 19 showing the average
deviation ∆ē and the worst-case deviation δ.

0 0.5 1 1.5 2

0

0.25

0.5

0.75

1

δ

∆
ē

correct detection wrong detection

(b) Red marks correspond to a faulty landmark detection, while green marks
indicate that all landmarks have been detected correctly.

Figure 3: Simulated failover results of the EKF-SLAM application with a discrete time step τstep = 2.0s and varying data ages.
With a few exceptions, the data points of data ages 2, 5, 9 and 12 lie within the same cluster, while the data points of data age
19 are clearly separated with a direct negative effect on the average deviation ∆ē and the worst-case deviation δ. Furthermore,
the probability for a wrong landmark detection is drastically increased.

Subsection V-C. Using dmax(t) as a constraint we analytically
derive the maximum achievable checkpointing period Pc,max(t)
on our demonstrator setup.

A. SLAM Application

Simultaneous Mapping and Localization (SLAM) is the
process where a moving object creates a global map of its
current environment and uses this map to navigate and deduce
its position and orientation at any point in time. A SLAM
algorithm consists of a prediction step, which is based on
a motion model and an update step, which is based on an
observation model. A learning process between the states and
measurements ensure an accurate representation. The most
common learning method for SLAM is the Kalman Filter,
which is based on the assumption of a uni-modal distribution.
We use a simulation of an Extended Kalman Filter (EKF)
SLAM application which can be found in [12].

Figure 2a presents simulation results, which compares the
curve the algorithm is trying to follow (blue) with the curve
calculated by the EKF-SLAM approach (red). The simulation
advances with discrete time steps τstep. The plot also shows a
successful recovery where the green triangle represents the last
checkpoint taken before a failure. The red data point represents
the time step at which the failure occurs operation and the blue
square represents the first computation after the recovery using
the old checkpoint data. It can be observed that this first data
point after the recovery estimates the position further behind
than the actual position is. However, with further operations
the red curve quickly swings back into normal operation.

Figure 2b presents an example with a faulty recovery as a
landmark is re-detected after recovery. The algorithm uses a
threshold for distinguishing points in the environment. During

a recovery from a failure it may occur that already detected
landmarks are lying outside of this threshold radius which
leads to a false re-detection as a new landmark. This leads
clearly visible to a permanent deviation from the actual curve
as the algorithm believes that at position (15, 30) are two
obstacles instead of one . This occurs only in the case where
the recovered position is far away from the actual position,
which leads to a temporal difference between the position of
the car derived from the landmarks and the old saved position.

B. Quality Analysis

To measure the influence of the data age on the quality of
the algorithm we introduce two metrics. The error ei reflects
the euclidean distance of the computed points of the two curves
in the computational step i. The average of these errors can be
computed before and after a simulated failure. To define the
metrics we use the following definitions:

ē(bf) =
1

n

n∑
i=1

e
(bf)
i , (4)

ē(af) =
1

n

n∑
i=1

e
(af)
i , (5)

e(af)wc = max
∀i∈[1...n]

e
(af)
i , (6)

with ē(bf) being the average error before the failure, ē(af)

being the average error after the failure and e
(af)
wc being the

worst-case error after the failure. We define ∆ē as the difference
of the average of all calculated points before ē(bf) and after
ē(af) a simulated failure occurred:

∆ē = ē(af) − ē(bf). (7)



We define δ as the worst-case deviation e(af)wc compared to the
average ē(bf) as follows

δ = e(af)wc − ē(bf). (8)

The data shown in Figure 3 is the result of a simulation with a
discrete time step of τstep = 2.0s and fixed landmark positions.
To evaluate the effect of the data age we performed experiments
with the data ages 2, 5, 9, 12 or 19. Smaller values mean that the
checkpoint has been taken more recently to the occurrence of
the failure such that at the point of recovery a more recent data
point can be used for calculating the position. Some outliers
of the data age 19 could not be shown in the plot. Figure 3b
marks the simulation runs where a recovery could be performed
successfully and the simulation runs where a landmark was
detected wrongly. It can be observed that an older checkpoint
leads to bigger average errors but especially to bigger worst-
case errors. Considering the influence of the data age on both
the average deviation ∆ē and the worst-case deviation δ as well
as on the number of wrong detections, we define the data age
dmax(t) = 12 as an exemplary upper bound with acceptable
deviations. We use the presented EKF-SLAM application in the
following subsection to further perform failover experiments
in order to show the applicability of our analysis from Section
IV. Furthermore, we use the upper bound dmax(t) = 12 as
an example to derive a maximum achievable checkpointing
period.

C. Failover Experiments

For our failover experiments we use a setup consisting of
3 Raspberry-Pi 4B devices, with 8GB RAM and a quad-core
Cortex-A72 with maximum frequency of 1.5 GHz. We use a
star-topology network using a switch and Ethernet links for the
communication between the devices. Our framework running
on each Raspberry Pi uses a service-oriented communication
middleware with a publish/subscribe pattern and allows to
simulate ECU failures by shutting down the framework
instances. Failures are detected via heartbeats and timeouts. On
top we use an agent-based platform, characterized by automatic
mapping and checkpoint subscription. In addition to the active
tasks, safety-critical tasks have a passive redundancy on another
ECU. Passive tasks subscribe to the checkpoints of the active
tasks. In the event of an active task failure, the passive task
is restarted using the last successfully transmitted checkpoint.
We divided the complete application into four tasks:
• t1: Simulation task
• t2: Pre-processing task
• t3: Observation task
• t4: EKF-SLAM algorithm task

For the failover measurements presented in Figure 4 the tasks
t1, t2 and t3 are active on e1 and t4 is active on e2, while all
passive tasks are mapped to e3. In the experiments we shut
down e2 at random points in time and measured the data age
d(t4) after the recovery.

Figure 4a presents the data age obtained by our experiments
carried out with an application period of Pa = 2s and a varying
checkpoint period Pc(t4). For each variable set-up of Pc(t4) we

carried out ten measurements. The red curve corresponds to the
upper bound dwc(t4) obtained through Equation 2 for a given
checkpointing period Pc(t4). For the experiments depicted in
Figure 4b, a fixed checkpoint period of Pc = 5 · Pc,d was
selected, while the application period Pa was varied.

Most importantly, it can be observed that none of the
measurements exceed the upper bound obtained through
Equation 2. As some of the worst-case measurements lie
directly on the bound, the experiments are consistent with
our analytically derived exact bound. In Figure 4a the worst-
case data age increases linearly with the checkpointing period
Pc(t4), while the worst-case number of lost iterations Nt(a, f)
adds a constant offset. In Figure 4b the worst-case data age
decreases exponentially with an increasing application period
Pa and an offset of the checkpointing period Pc(t4) = 5 · ·Pc,d.
Once Pa doubles, about half of the iterations will be lost as the
worst-case recovery time stays the same. Note that we define
the data age in iterations and not in absolute time, which
could be obtained by multiplying the data age d(t4) with the
application period Pa.

Following the quality analysis from Subsection V-B we use
an exemplary data age constraint dmax(t4) = 12, which is
depicted as a black dashed line in Figure 4a. The resulting
maximum achievable checkpointing period of Pc,max = 5·Pc,d

is marked with a green dotted line. By increasing the default
checkpointing period from Pc(t4) = 1 · Pc,d to Pc,max(t4) =
5 · Pc,d, the networking and processing overhead caused by
checkpointing can already be reduced by 80% in this example.

In summary, our case study and experiments have con-
firmed the applicability of our approach. We have shown the
application-specific dependency between state data age and
the accuracy of an EKF-SLAM application. Using a data age
constraint obtained by the quality analysis, we analytically
derived the maximum achievable checkpointing period. By
performing additional failover experiments we have confirmed
that worst-case results of our randomized experiments are
consistent with our analytically derived exact bound. To apply
our approach to other applications, a safe upper bound for the
data age has to be found by using application-specific metrics
and safety considerations. This maximum data age constraint
can then be used for our application-independent analysis
to find a suitable maximum achievable checkpointing period.
Overall, when designing the checkpointing period a trade-off
between the impact on algorithmic behavior (in our example
on the average deviation ∆ē and the worst-case deviation δ)
and the overhead reduction has to be made.

VI. CONCLUSION

In this paper we have presented an analysis to calculate
a maximum achievable checkpointing period for distributed
fail-operational automotive applications. Here, we analyzed the
effects of the recovery time on the data age and determined a
worst-case number of computational steps that will be missed
during the downtime in order to obtain the maximum possible
checkpointing period. Furthermore, we presented a detailed
case study of a SLAM application as a representative real-world



Measurements Analytical bound dmax(t4) Pc,max(t4)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

n = Pc(t4)
Pc,d

d
(t

4
)

(a) Results with an application period Pa = 2s and a varying checkpointing
period Pc(t4). For a given data age constraint the maximum checkpointing
period can be obtained graphically by finding the intersection point with the
red curve. The black dashed line marks the data age constraint dmax(t4)
obtained through the quality analysis in Subsection V-B. The cyan dotted
line marks the corresponding maximum checkpointing period Pc,max(t4)
obtained through Equation 3.

0 400 800 1,200 1,600 2,000
0

10

20

30

40

50

Pa[ms]

d
(t

4
)

(b) Results for a fixed checkpointing period of Pc(t4) = 5 ·Pc,d and a varying
application period Pa.

Figure 4: Results of the random failover experiments presenting the data age d(t4) at the backup task instance of t4 after
successful recovery with τr(t, f) = 11.82s, Lbc(p(t4)) = 0.0548s and Lwc(t4) = 0.238s. None of the measurements exceed
the upper bound obtained through Equation 2, here marked as the red curve. Worst-case results of our experiments are consistent
with our analytically derived exact bound as some measurements lie directly on the curve.

application from the automotive domain. Here, we analyzed the
dependency between state data age and accuracy and derived an
exemplary state data age constraint. In addition, we conducted
failover experiments on our demonstrator setup using an agent-
based software platform to show the applicability of our worst-
case analysis. Worst-case results of our randomized experiments
are consistent with our analytically derived exact bound. In
summary, our approach can be used to reduce network and
processing overhead caused by sending checkpoints in order to
achieve a cost-efficient and safe behavior of stateful distributed
fail-operational applications.

REFERENCES

[1] P. Weiss, A. Weichslgartner, F. Reimann, and S. Steinhorst, “Fail-
operational automotive software design using agent-based graceful
degradation,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), 2020.

[2] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich, “Real-Time
Task Migration for Dynamic Resource Management in Many-Core
Systems,” in Workshop on Next Generation Real-Time Embedded Systems
(NG-RES 2020), ser. OpenAccess Series in Informatics (OASIcs), vol. 77.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020, pp. 5:1–5:14.

[3] S. v. Dorff, B. Boddeker, M. Kneissl, and M. Franzle, “A fail-safe
architecture for automated driving,” in 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, pp. 828–833.
[Online]. Available: https://ieeexplore.ieee.org/document/9116283/

[4] F. Oszwald, P. Obergfell, M. Traub, and J. Becker, “Reliable
fail-operational automotive e/e-architectures by dynamic redundancy
and reconfiguration,” in 2019 32nd IEEE International System-on-
Chip Conference (SOCC). IEEE, pp. 203–208. [Online]. Available:
https://ieeexplore.ieee.org/document/9088090/

[5] S. Muhammad Abrar Akber, H. Chen, Y. Wang, and H. Jin,
“Minimizing overheads of checkpoints in distributed stream processing
systems,” in 2018 IEEE 7th International Conference on Cloud
Networking (CloudNet). IEEE, pp. 1–4. [Online]. Available: https:
//ieeexplore.ieee.org/document/8549548/

[6] T. Aung, H. Y. Min, and A. H. Maw, “Coordinate checkpoint
mechanism on real-time messaging system in kafka pipeline
architecture,” in 2019 International Conference on Advanced Information
Technologies (ICAIT). IEEE, pp. 37–42. [Online]. Available:
https://ieeexplore.ieee.org/document/8921392/

[7] P. Pop, V. Izosimov, P. Eles, and Zebo Peng, “Design optimization
of time- and cost-constrained fault-tolerant embedded systems with
checkpointing and replication,” vol. 17, no. 3, pp. 389–402. [Online].
Available: http://ieeexplore.ieee.org/document/4757196/

[8] P. Weiss, S. Elsabbahy, A. Weichslgartner, and S. Steinhorst,
“Worst-case failover timing analysis of distributed fail-operational
automotive applications,” in Proceedings of the Conference
on Design, Automationand Test in Europe (DATE), 2021.
[Online]. Available: https://tum-esi.github.io/publications-list/PDF/
2021-DATE-Worst-Case%20Failover%20Timing%20Analysis%20of%
20Distributed%20Fail-Operational%20Automotive%20Applications.pdf

[9] B. Akesson, A. Molnos, A. Hansson, J. A. Angelo, and K. Goossens,
Composability and Predictability for Independent Application Develop-
ment,Verification, and Execution. New York, NY: Springer New York,
2011, pp. 25–56.

[10] A. Weichslgartner, S. Wildermann, D. Gangadharan, M. Glaß, and
J. Teich, “A design-time/run-time application mapping methodology
for predictable execution time in mpsocs,” ACM Trans. Embed. Comput.
Syst., vol. 17, no. 5, 2018.

[11] A. D. Kshemkalyani and M. Singhal, “Distributed computing: Principles,
algorithms, and systems,” pp. 456–507, 2008.

[12] AtsushiSakai, “Ekf-slam,” https://github.com/AtsushiSakai/
PythonRobotics/blob/master/Localization/extended kalman filter/
extended kalman filter localization.ipynb.

https://ieeexplore.ieee.org/document/9116283/
https://ieeexplore.ieee.org/document/9088090/
https://ieeexplore.ieee.org/document/8549548/
https://ieeexplore.ieee.org/document/8549548/
https://ieeexplore.ieee.org/document/8921392/
http://ieeexplore.ieee.org/document/4757196/
https://tum-esi.github.io/publications-list/PDF/2021-DATE-Worst-Case%20Failover%20Timing%20Analysis%20of%20Distributed%20Fail-Operational%20Automotive%20Applications.pdf
https://tum-esi.github.io/publications-list/PDF/2021-DATE-Worst-Case%20Failover%20Timing%20Analysis%20of%20Distributed%20Fail-Operational%20Automotive%20Applications.pdf
https://tum-esi.github.io/publications-list/PDF/2021-DATE-Worst-Case%20Failover%20Timing%20Analysis%20of%20Distributed%20Fail-Operational%20Automotive%20Applications.pdf
https://github.com/AtsushiSakai/PythonRobotics/blob/master/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb
https://github.com/AtsushiSakai/PythonRobotics/blob/master/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb
https://github.com/AtsushiSakai/PythonRobotics/blob/master/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb

	Introduction
	Related Work
	System Model
	Application Model
	Failover Model

	Checkpoint Optimization
	Checkpointing Period
	Data Age
	Worst-Case Data Age
	Maximum Checkpointing Period

	Case Study: SLAM Application
	SLAM Application
	Quality Analysis
	Failover Experiments

	Conclusion
	References

