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Abstract—Dynamic reconfiguration and adaptability are crucial
features in the evolution from automation to autonomy of indus-
trial control systems. Component-based systems, such as specified
in the IEC 61499, already provide a compelling framework for the
distribution and transformation of software components, yet most
reconfiguration approaches rely on a manual implementation of
the required reconfiguration setup. We propose an automatic
mechanism to generate the needed reconfiguration operations
and order them into reconfiguration sequences, while preserving
the dependencies of each operation, similar to the concepts
of quiescence or version consistency. We further identify four
scenarios for dynamic reconfiguration with different requirements
regarding the treatment of state and showcase the results of our
methodology on each scenario.

Index Terms—IEC 61499, Topological Sorting, Dependency
Management, Dynamic Update

I. INTRODUCTION

Future industrial control systems must be adaptable and able
to change autonomously without user interaction to tolerate
failures or changing requirements [1]. This autonomous change
includes the identification of disturbances, the decision-making
processes to decide on the best course of action, and the ability
to implement the needed changes. The IEC 61499 provides
the basic infrastructure for distributed online change. This
paper extends this infrastructure to automatically generate the
reconfiguration sequences needed to execute the change.

The discussion on how to change a distributed system
has been started over 30 years ago and is not yet solved
[2]. Component-based systems add a layer of abstraction that
facilitiates the work on methods of Dynamic Reconfiguration,
especially in the domain of real-time distributed systems [3–7].

From the perspective of the control device, most PLCs
follow the IEC 61131-3 standard, which is incompatible with
this notion of component-based systems. By contrast, the
IEC 61499 was modeled to fit into this niche and provides the
basic infrastructure of component-based systems through its
encapsulation and event-triggered execution.

The ability to change and adapt has been ingrained in the
design of the IEC 61499. The underlying infrastructure for
this ability has been a topic of discussion since the beginning
of the IEC 61499 [8–11]. In combination with the automatic
deployment configuration generation, as proposed by [12],
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Fig. 1. From the IEC 61499 application, the event traces can be extracted.
The difference between two applications yields the required reconfiguration
operations for the change, which can be assembled into a reconfiguration
sequence given the event traces.

this framework may enable the autonomous adaptation of
control systems. Nevertheless, most existing works focus on the
development process to create the reconfiguration applications
or their verification, instead of the automatic generation of the
reconfiguration applications. In fact, the manual implementation
of reconfiguration applications is inherently difficult, error-
prone, and can have dangerous consequences for safety-critical
systems. Existing approaches for automatic dynamic updating
procedures rely on discrete models and specifications that are
usually not available in practice [13].

We envision that safe and simple dynamic reconfiguration
processes are a crucial ingredient for future control systems,
especially considering the transition from automatic to au-
tonomous behavior. The existing approaches are insufficient in
making automatic dynamic reconfiguration a feasible feature
or are yet unable to bridge the gap from theory to practice.

In this paper, we propose a methodology to automatically
generate reconfiguration sequences that allow the safe reconfig-
uration of distributed, component-based systems based on the
IEC 61499 (Figure 1). We introduce a mechanism to extract
the required reconfiguration operations from the difference
between two applications and identify supplemental informa-
tion. These operations may be organized into a dependency
graph using a ruleset, and a linearized reconfiguration sequence
can be extracted via topological sorting. The methodology is
showcased on four reconfiguration scenarios, and an extension
is proposed to identify and handle feedback loops.
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II. BACKGROUND

A. IEC 61499 Execution Model

IEC 61499 applications are event triggered. The standard
itself leaves room for interpretation, which resulted in a plethora
of different implementations [14, 15]. A favorable real-time
execution model was introduced by [16] through the event
chain concept. An event chain is a trace of executions caused
by an event at an event source, which eventually terminates
in an event sink. This event chain can be implemented in a
real-time thread. Alternative execution models implement every
FB as their own process, which leads to more asynchronous
behavior, but less predictable real-time behavior [17].

Event Loss: Despite the ambiguities of the execution
model of the IEC 61499, it appears to be universally agreed
upon that event loss should be avoided. The order of execution
may depend on whether a cyclic, parallel, or sequential
execution model is chosen, but in all semantics, the event should
not be dropped [18]. Practically, the consideration of event loss
would require the introduction of timeouts or handshakes and
quickly blows up the execution control chart of an FB. As a
result, losing events must be prevented during a reconfiguration,
but the order of occurence may be affected.

B. Dynamic Reconfiguration

The topic of Dynamic Software Updating in general [19,
20] and updating Discrete Event Controllers in particular [13]
has been addressed in detail. Yet, these solutions often require
a formal specification using discrete models, which is rarely
available, but allows an automatic, correct-by-design synthesis,
if all necessary information is available. By contrast, this paper
addresses the update of (potentially distributed) component-
based architectures that are not limited to discrete semantics,
and discusses the origin of the needed supplemental information
with respect to the IEC 61499.

The ability to adapt and change has been ingrained in the
IEC 61499 from the very beginning: The standard itself defines
a set of reconfiguration services [21] for this purpose. The
topic has been addressed in multiple publications, in particular
regarding the feasibility and verification of a reconfiguration [8,
22]. In general, the reconfiguration services are implemented
inside a reconfiguration application.

[11] introduces the three phases of a reconfiguration: The
startup sequence, the reconfiguration sequence, and the closing
sequence. In other publications, these phases are referred to as
Initialization (RINIT), Reconfiguration (RECONF), and Deini-
tialization (RDINIT), respectively [22]. The reconfiguration
application was further structured into evolution steps that
handle a specific Evolution region of interest [10]. In this
scope, the concept of a dependency graph as an evolution
graph was introduced, mainly as a means of visualization.

An alternative approach to dynamic reconfiguration was
introduced in [23]. In this case, the IEC 61499 application was
implemented in Erlang, which allows Hot Code Loading by
design. Thus, to reconfigure this application, the existing Erlang
mechanisms could be used, and the reconfiguration instructions

had to be implemented manually. In [17], this was extended
to allow the automatic generation of simple reconfigurations.

As of now, there exists no framework for the automatic
reconfiguration of IEC 61499 applications. While manual
reconfigurations are possible, and they could be verified, this
procedure is cumbersome and errorprone. In this paper, we
propose the automatic generation of reconfiguration sequences,
which represents a stepping stone towards a fully-automatic
reconfiguration.

III. RECONFIGURATION SCENARIOS

State in Dynamic Reconfiguration: A major hurdle in
the dynamic reconfiguration of a component-based system is
the handling of state [3]. In [4], the continuity property is
introduced with respect to the state transformation. To achieve
continuity, a service must be continued and partially executed
services must be completed. In a traditional change scenario, in
which the system is shut down and restarted, the state can be
discarded and the new system can be restarted from a known,
initial state. In the dynamic case, this continuity and integrity is
a critical component. Given two arbitrary systems, the prospect
of being able to elegantly transition from one to the other is
rather bleak. Transforming a flight controller into an HVAC
controller is difficult not because different components are
used, but because of the difference in state and the difficulty
to achieve continuity.

State Transformations: A state transformation offers the
necessary information to transform the state, either by mapping
state X to state Y, or by identifying suitable safe update
points, e.g. wait until state X and switch to state Y. For
a small class of problems, the needed state transformation
can be identified automatically. In [4], the system behavior
is modeled with interface automata, which are then used
to identify a correct state transformation. This requires the
availability of corresponding behavior models, and a framework
to identify the state transformation. Other automatic frameworks
require the availablility of formal specifications and manually
created mapping functions [13]. In this paper, we characterize
reconfiguration scenarios based on the state transformation
needs from an architectural perspective, irrespective of their
origin.

Reconfiguration Scenarios in IEC 61499: The system view
of an IEC 61499 application does not comprise any information
how another system may be transformed into this one or how
it could be transformed into another one. Current behavior
models are not suitable to automatically identify appropriate
state transformations, although that may change in the future
[24]. We identify four classes of reconfiguration scenarios with
different requirements regarding the handling of state.
(I) Stateless In a stateless reconfiguration, the internal state

does not matter and can be discarded, or there is no
internal state. This is the case for robust processes, which
can quickly recover the state, or for specific event FBs or
simple FBs that contain little or no state.

(II) State mapping In most mapping reconfigurations, the
application behavior is not changed but only the allocation



of resources. In this scenario, the state can be mapped
from one FB to another without transformation.

(III) State transformation (SISO) In the simple case of state
transformation, the state of one FB is transformed into
the state of one other FB, for example if the FB version
is updated and the implementation changes slightly.

(IV) State transformation (MIMO) For complex changes,
the state of multiple FBs can be transformed into the
state of multiple others. This can be the case when two
FBs are replaced by a single new one, or a subapplication
is exchanged by another subapplication.
IEC 61131-3 Online Change: Current PLC software

suites based on the IEC 61131-3 may encompass an online
change feature [10]. Given the IEC 61131-3 execution model,
this usually means that the current application program is
exchanged for a new version, and the state is mapped, but
not changed (Scenario II: State mapping). This allows only
for very small changes and requires care of the developer to
not cause catastrophic failures. The fragmented state of the
IEC 61499 allows for much more fine-grained changes with
less impact on the execution and more control over the state
transformation.

IV. RECONFIGURATION OPERATIONS

In order to be able to change a component-based system,
the necessary operations must be identified. We define a
reconfiguration operation o as a tuple (Equation 1), where
i is the instruction or service, t is the target, e.g. a component
or a connection, and D is a set of operations that this operation
depends on.

o = (i, t,D) (1)

IEC 61499 Reconfiguration Services: The IEC 61499
defines a set of reconfiguration services and a state machine
for the operational states of an FB. These services are specific
to the runtime environment and may be provided by a set of
corresponding management FBs. An exhaustive list of services
is given by [16]. These management FBs can be assembled into
a Reconfiguration Application or Evolution Control Application
[16, 25].

In this paper, the IEC 61499 services are treated as the
instructions to a reconfiguration operation. The operation to
create a new FB would thus contain the CREATE FB service
as the instruction i, the target t is the FB to be created, and D
would indicate a set of dependencies that must be performed
before the FB can be created.

Selected Reconfiguration Operations: The services as
described by the IEC 61499 are intended to be exhaustive, i.e.
they should allow any type of reconfiguration. In practice, most
reconfigurations are going to be simplistic, such as tweaking a
parameter. Even complicated reconfigurations do not typically
need the full set of services, at least during normal operation.
The KILL and RESET services, which can be used to interrupt
a running FB and may lead to a corrupted state or event loss,
are hardly compatible with most execution semantics as long

TABLE I
DESCRIPTION OF THE USED RECONFIGURATION SERVICES AS DEFINED IN

[16].

IEC 61499-1 Description

CREATE FB Create a new function block.

CREATE CON Create a new data / event connection.

DELETE FB Delete a function block.

DELETE CON Delete a data / event connection.

START Set the operational state of the FB to Started.

STOP Set the operational state of the FB to Stopped.

READ Read the data inputs, outputs, and internal variables of
a FB.

WRITE Write the data inputs, outputs, and internal variables of
a FB.

as continuity is desired. Yet, there may be specific edge cases
in which their use is required.

In this paper, thus, a selection of these services is used
(Table I). Most noteworthy, these are the services to create and
delete FBs and connections. Further, the flow of events must
be controlled, which can be achieved by setting the operational
state of a FB to stopped or started. Finally, the internal state of
FBs must be accessed by reading and writing. Some services
are omitted from the methodology since they do not add any
meaningful value. These are the services to create and delete
types and resources, and they can always be performed during
the RINIT or RDINIT phases. The methodology can be easily
extended to incorporate other or new services.

A. Automatic Generation of Reconfiguration Operations

As identified by [10], most of the needed reconfiguration
operations can be extracted from the difference between
two applications, i.e. the delta. In this paper, we generate
the operations automatically from the delta: After parsing
the applications, their contents can be compared, and the
operations needed to patch this difference are generated. Yet,
the delta fails to capture the intention of the developer, and
thus complicates the generation of the state transformation. In
[4], the behavior models are used to automatically generate
feasible state transformations. Given the lack of appropriate
behavior models in the IEC 61499, we are assuming that any
state transformation is supplied by the system developer until
suitable models are available.

In Section III we have identified four scenarios with different
needs for the state handling. In this section, we discuss how
the operations for these scenarios can be generated.

1) Stateless Reconfiguration: For Scenario I, the stateless
reconfiguration, the difference contains all needed information:
The added and removed function blocks and connections.
As a result, the needed CREATE, START, STOP, and DEL
operations can be added. Every FB that is created must be
started, and every FB that is deleted must be stopped.

2) State Mapping Reconfiguration: For Scenario II, not all
information is given in the difference. CREATE, DEL, START,
and STOP operations can be generated the same as in Scenario I.
The mapping of one FB to another must be performed manually



and supplied to the generation process. The necessary state
mapping mmap is defined in Equation 2, where s is the source
FB and t is the target FB. As a result, the necessary READ
and WRITE operations can be added, where the state of s is
read, and the state of t is written.

mmap = (s, t) (2)

3) SISO State Transformation Reconfiguration: Scenario III
can be treated similarly to Scenario II, with the exception of
an additional state transformation operation added between
the READ and WRITE operations. This state transformation
operation must be provided by the application developer,
and may be implemented as an FB. A definition of a state
transformation mSISO is given in Equation 3, where s is the
source FB, t is the target FB, and f is the transformation
function.

mSISO =
(
s, t, f(states)→ statet

)
(3)

4) MIMO State Transformation Reconfiguration: The oper-
ations for Scenario IV are identical to Scenario III. In addition
to the state transformation operation between two FBs, this
operation must synchronize more than one input and/or output
FB. A definition for the MIMO state transformation mMIMO is
given in Equation 4, where S is a set of source FBs, T is a
set of target FBs, and f is the transformation function.

mMIMO =
(
S, T, f(stateS)→ stateT

)
(4)

V. RECONFIGURATION SEQUENCES

After generating the reconfiguration operations from the
delta, the operations must be assembled into the right order to
preserve the continuity of the application. This preservation can
be achieved by updating the system from event source to event
sink. Traditionally, the IEC 61499 reconfiguration services were
implemented in management FBs, which are assembled into
reconfiguration applications. In this paper, the operations are
mapped into a dependency graph, and a linearized sequence is
extracted. In particular, the dependencies are added according
to a set of rules, and the linearized sequence is found through
topological sorting. The reconfiguration sequence could be
implemented in a reconfiguration application or simply sent to
a runtime service that executes the operations. We deliberately
chose a linearized sequence to prevent concurrency issues and
increase determinism, yet the dependency graph can be easily
used to create a concurrent reconfiguration plan or configuration
manager as described by [5].

Reconfiguration Sequence Definition: A reconfiguration
sequence s is an ordered sequence of reconfiguration operations
oi that must be performed to reconfigure an application. It must
preserve the order of the operations to prevent undesirable side
effects. For example, a new function block must be started
before it can be connected, and it should be fully connected
before the old function block is deleted. Thus, the ordering
of the sequence s must ensure that the dependencies of an

operation oi are satisfied by the preceding operations o0 to
oi−1.

s =
[
o0, · · · , on|oi.D ⊆

{
o0, · · · oi−1

}]
(5)

A. Sequence Dependencies

Dependencies between evolution regions of interest (EROI)
were introduced by [10]. In this paper, we propose the introduc-
tion of dependencies between the reconfiguration operations
themselves. These dependencies lead to the identification of
the EROI, since by definition, an EROI is a region that can
be reconfigured independently. If a set of operations can be
executed independently, this set can be treated as an EROI.

Dependency Rules: The dependencies can be injected
through a set of rules. The rules are applied to the set of
reconfiguration operations and yield the dependencies of each
particular operation. Once all dependencies have been added, a
dependency graph can be used for visualization, and a suitable
reconfiguration sequence can be extracted via topological
sorting.

A list of dependency rules is given in Table II. These rules
are applied to any operation in the reconfiguration sequence,
i.e. if an operation with a CREATE FB instruction is detected
for a target FB, it must occur before a corresponding START
operation for this particular FB. In this method, any operation
may only appear once in a reconfiguration sequence, i.e. an
FB can not be started and stopped two consecutive times since
the rules can not differentiate between the operations.

The START and STOP ordering rules ensure that all FBs are
stopped and started from event source to sink. In this manner,
the change can propagate through the application while old
events are processed in the old version, and new events are
processed in the new version. These rules add dependencies
for the event and data connections in the application. In the
case of feedback loops, a circular dependency is created that
cannot be resolved. A solution to this problem is discussed in
Section VII.

An example of a resulting dependency tree is given in Figure
2. As can be seen, the dependencies leave several implemen-
tation choices for the order of execution. The dependencies
also allow a transparent and explainable reasoning, why a
specific operation is or is not currently allowed. This facilitates
a conversation between the automatic tooling and the system
developer, who can reproduce why a reconfiguration is or is
not possible.

B. Sequence Ordering

Once the reconfiguration operations are created and the
dependencies are injected, the operations can be sorted by a
simple topological sorting algorithm based on Kahn’s algorithm
[26], in which the operations are sorted by the dependency
first, and a static priority second. The priorities are defined
for every instruction i, e.g. START has a higher priority than
STOP.

The sequence ordering according to the dependencies guar-
antees that any dependency is fulled, i.e. that any execution will
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Fig. 2. A dependency tree for the reconfiguration operations of Scenario 1 (Figure 3). A node represents an operation, an edge indicates that the lower
operation depends on the higher one.

TABLE II
DEPENDENCY RULES FOR THE INJECTION OF DEPENDENCIES INTO THE
OPERATIONS. THE RESULTING DEPENDENCIES ALLOW THE SORTING OF

THE OPERATIONS.

Rule Description

STOP before START Existing FBs must be stopped be-
fore they can be started.

CREATE FB before START New FBs must be created before
they can be started.

STOP before DEL Any FB must be stopped before it
can be deleted.

START ordering All FBs must be started in the
order of the FB connections.

STOP ordering All FBs must be stopped in the
order of the FB connections.

STOP before CREATE CON Any FB must be stopped before
its connections can be created.

STOP before DEL CON Any FB must be stopped before
its connections can be deleted.

CREATE FB before CREATE CON Any FB must be created before its
connections can be created.

DEL CON before DEL FB Any connection must be deleted
before the FB can be deleted.

DEL CON before START Any connection must be deleted
before the FB can be started.

STOP before QUERY Any FB must be stopped before
its state can be queried.

STOP before WRITE Any FB must be stopped before
its state can be written.

WRITE before START Any state must be written before
the FB can be started.

be performed either by the old version, or the new version. No
events are lost or have to be discarded. The priority ensures that
given two choices, the more urgent operation is performed. In
general, it is preferable to START as soon as possible and STOP
as late as possible to minimize the disturbance. This algorithm
works well for many scenarios, but can suffer from priority
inversion. In particular, a higher priority operation (START)
could be blocked by a lower priority operation (DEL CON).
The general problem could be extended to an optimization
problem if an appropriate cost function was introduced, e.g.
minimizing the disturbance from STOP to START. This would
require the quantified disturbance per operation and could

also incorporate communication overhead. This optimization
problem is not considered in this paper.

VI. EVALUATION OF SCENARIOS

The feasibility of using the dependency graph to generate a
topological sorting is exhibited in four scenarios as identified
in Section III. For each scenario, the necessary operations
and the potential impact on the execution are presented. For
the sake of brevity, only the relevant FBs of an application
are displayed. All other function blocks in the application are
able to continue uninterruptedly unless they have connections
through the affected FBs.

Reconfiguration Phases: In each scenario, the different
phases according to [11] are indicated. The startup sequence
contains the creation of new FBs and connections. During
the reconfiguration sequence, the operation is disrupted. This
is marked by the first STOP operation, and ends with the
reversal of this operation. In the closing sequence, remaining
connections and FBs are deleted and further FBs are started.
Some services, such as CREATE TYPE or CREATE RES are
omitted in this paper. These operations would always occur
during the RINIT or RDINIT phases.

A. Scenario I: Stateless Reconfiguration

In Figure 3, a reconfiguration is expressed in which two FBs
are replaced by two other FBs. In this particular scenario, the
exchange is considered to be stateless, i.e. the states of FBs B
and D can be discarded, and FBs F and G can be started from
their initial states.

Operations: The reconfiguration requires operations to
create, start, stop, and delete the affected FBs in the correct
order. According to the flow of events and data, the reconfigu-
ration must occur from FB A to FB E, i.e. the FBs must be
stopped from left to right and started from left to right. In this
manner, the integrity and continuity of the event flow can be
guaranteed. The dependency tree for this scenario is given in
Figure 2.

Impact: After the new FBs are added, the two FBs can be
exchanged one after another. This allows the reconfiguration
of FB B to start, while FB D can still process old events.
Similarly, FB F can already continue, while FB G is still under
reconfiguration.
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B. Scenario II: FB Mapping Reconfiguration

The second scenario investigates the reconfiguration se-
quences for the redistribution of FBs from one resource to
another (Figure 4). Two function blocks from Resource 1 (C,
D) are shifted to Resource 2, which requires the addition of
two communication FBs (X and Y).

Operations: Similar to Scenario I, the operations to create,
start, stop, and delete are added as needed. In addition, two
operations to read and write are added as well, to map the
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Fig. 5. Scenario III: The version of a function block is changed, thus requiring
an explicit state transformation between the stopping of FB C and the start of
FB C*.

state between the resources.
Impact: Initially, the new function blocks and connections

are added. During the critical phase, FB B is stopped to prevent
the further execution. FB C is stopped first and the state is
read and written to FB C*. This allows FBs X, Y, and C* to
be started while the state from D is read and written to D*. If
concurrent or parallel execution were possible, some of these
operations could be performed in parallel, thus further reducing
the overhead. It is noteworthy that the distinction between the
RECONF and RDINIT phase starts to blur, as the execution
can be reinstated continuously.

C. Scenario III: SISO State Transformation

In Scenario III (Figure 5), an FB is replaced by another FB
with an explicit state transformation. This new FB may be a
new version of the same type, or another FB altogether. The
key difference to Scenario II is the explicit transformation of
the state between the reading and the writing of the state.

Operations: A state transformation operation is added to
explicitly transform the state between the READ and WRITE
operations. Other operations remain similar to scenarios I and
II.

Impact: This change has a particularly small impact since
only the FB before the one to be exchanged must be suspended
momentarily. The biggest difficulty is the identification of the
state transformation, which can be performed offline. Given
the fragmented state of the IEC 61499 application, the state
of an FB is small and consists of the ECC state and the set of
variables (input, output, internal).

D. Scenario IV: MIMO State Transformation

In the MIMO state transformation case, the state of multiple
FBs is needed to reconfigure one or multiple FBs. In this
particular scenario, the state of three FBs must be read and
transformed to reinitialize a new FB. FB B* replaces FBs B
and E, while also requiring the state of C.
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Operations: In addition to the operations discussed
before, the state transformation in this scenario requires the
synchronization with three READ operations. Thus, the state
transformation can only start once the states of FBs B, C, and
E are read.

Impact: Stopping FB A suspends the arrival of new
events, while previous events can still be processed. Once
the connections are rewired to FB B*, FB A can be restarted,
and FB B* is started as soon as the state is transformed. The
required inputs of the state transformation lead to a further
synchronization of the sequence, thus also increasing the overall
impact.

E. Discussion
The reconfiguration scenarios show how the methodology

enables the automatic generation of reconfiguration sequences
that preserve the continuity of the application throughout the
reconfiguration. The changes in the applications are swept
through the FB networks from source to sink. They also indicate
the elements that currently cannot be automated: Namely, the
state mapping and state transformation. This information is
not presently included in the IEC 61499 application, but is
represented by the intent of the system developer. Nevertheless,
this added layer of abstraction simplifies and facilitiates
the utilization of dynamic reconfiguration for a range of
reconfiguration scenarios.

VII. OUTLOOK: TRANSIENT RECONFIGURATION
SEQUENCES

The usage of the dependency tree based on the FB con-
nections works well for systems without cycles. In control
applications, feedback loops are a common occurrence. Thus,
to be able to achieve a fully automatic generation of reconfig-
uration sequences, these feedback loops must be handled as
well.

Feedback Loop Identification: The first problem of han-
dling feedback loops is their detection. A feedback loop is
defined by its trace (in the form of a directed, acyclic graph)
through the application, and the system state in which it occurs.
In an IEC 61499 application, these loops are defined implicitly
through the connection network and the behavior of the FBs.
By definition, every execution trace must terminate eventually,
thus every feedback loop should also terminate eventually. This
leaves several options to identify the relevent feedback loops:

1) Manual identification / specification
2) Exploration of the IEC 61499 application
3) Exploration of an IEC 61499 behavior model
4) Measurements on a running system
Manual identification and measurements on a real system

lack the necessary exhaustiveness, while the exploration of the
actual application will quickly run into a state space explosion
given the lack of boundaries typically set by the physical
process under control. The most promising approach would
utilize a behavior model of the IEC 61499 application, which
must include a model of the physical process as well. Recently,
there has been an increased interest in behavior modeling,
which could offer solutions to his problem [24, 27].

Breaking the loop: Once the trace of the loop and the
state in which it occurs is known, this information can be used
to devise whether it warrants an action, and what action can
be used to split this cycle. The goal of this procedure is to
identify a way to split the loop into old and new behavior.

To break the loop, a guard could be added to reach a
quiescent [2]. A guard would block the further execution of a
reconfiguration sequence until a condition is fulfilled, e.g. a
specific state of an FB is reached. The methodology of this
paper could easily be extended to incorporate new rules and
dependencies, yet the implementation of these guards in an
IEC 61499 runtime environment would require more effort.
Alternatively, the passive state could be adapted to allow the
resolution of cycles, while preventing new executions [2].

Limitations: There are two limitations to this methodology.
The first is the issue of long blocking guards that can prolong
the reconfiguration sequence, especially during the critical
RECONF phase. Offline verification and validation methods
should be used to ensure that any guard can be satisfied within a
suffiently short time, or that the overall disruption is compatible
with the real-time properties of the application. Secondly, even
if a method to break feedback loops is used, it is possible
to develop applications that are extraordinarily difficult to
reconfigure, e.g. deeply interconnected systems with strict hard
real-time requirements and minimal margins.

Obviously, this synchronization of feedback loops represents
an additional impact on the real-time execution of the applica-
tion. Nevertheless, if events should not be lost and the integrity
and consistency of the application should be preserved, they
must be handled appropriately.

VIII. CONCLUSION AND FUTURE WORKS

The transition from traditional manufacturing systems to
more adaptable or even (partly) autonomous systems is in-



evitable. A major step in this direction is taking the human
out of the loop and automating the reconfiguration procedure
as much as possible. Dynamic reconfiguration as a topic has
been addressed in the scope of component-based systems,
the IEC 61499, and even in industrial applications with the
IEC 61131-3. It is, thus, no longer a question of if it will be
used more frequently, but when.

In this paper, we proposed a methodology to automati-
cally generate reconfiguration sequences for component-based
systems, such as the IEC 61499. These sequences may be
implemented in various forms, such as reconfiguration applica-
tions. By automatically generating the required operations and
ordering them according to their dependencies, we are able to
guarantee the continuity of the provided services.

We also provided an outlook on future extensions of this
methodology. The reconfiguration sequences are a single
linearization of the dependency tree. Optimization algorithms
could be used to minimize the disruption of the application
during the reconfiguration if the disruption can be quantified
appropriately. The handling of feedback loops can be solved
by integrating guards into the sequences.
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