
A-PoA: Anonymous Proof of Authorization for
Decentralized Identity Management

Jan Lauinger , Jens Ernstberger , Emanuel Regnath , Mohammad Hamad , Sebastian Steinhorst
Technical University of Munich, TUM

Munich, Germany
firstname.lastname@tum.de

Abstract—Self-sovereign Identity Management (SSIM) pro-
motes self-control of credentials without relying on external
administration. However, the state-of-the-art SSIM based on
Decentralized Identifiers and Verifiable Credentials (VCs) defined
by the World Wide Web Consortium does not enable credential
holders to verify whether a Credential Issuing Authority (CIA)
legitimately issued a credential.

As a remedy, our work constructs a secure authentication
protocol, called A-PoA, to provide decentralized and anonymous
authorization of CIAs. We leverage a cryptographic accumulator
to enable the Root Authority (registering a Credential Schema)
with the ability to authorize a CIA (registering a Credential
Definition) to issue a credential. The proof of accumulator
membership relies on a non-interactive zero-knowledge proof.
This allows a credential holder or validator node to verify
the validity of a CIA, while the CIA remains anonymous.
Our security analysis shows the integrity and confidentiality
of our protocol against hostile network participants and our
experimental evaluation shows constant verification times inde-
pendent of the number of authenticated CIAs. Hence, A-PoA
introduces the missing building block to develop SSIM-capable
and VC-compatible ecosystems acting as a drop-in replacement
for traditional Public Key Infrastructure schemes.

Index Terms—Authentication, Authorization, Identity & Trust
Management, Anonymous Credentials, Verifiable Credentials,
RSA-Accumulators, Non-interactive Zero-Knowledge Proof

I. INTRODUCTION

The term Identity Management (IdM) refers to data manage-
ment around identification, authorization, and authentication
of identifiers in any form. In recent years, different forms of
IdM have emerged. Central IdM system design maintains the
identity of users in a single system and continues to remain
vulnerable to the single point of failure pattern [1]. Feder-
ated IdM systems distribute data of identities across trusted
platforms and provide benefits of exchange and linking of
identities. However, such systems enforce trade-offs between
transparency, usability, and negatively affect user privacy [2].

More recent solutions target user-centric IdM to keep users
or devices in full control of their identity data, removing

This work has received funding by the European Union’s Horizon
2020 Research and Innovation Programme through the nIoVe project
(https://www.niove.eu/) under grant agreement no. 833742.

With the support of the Technische Universität München - Institute for Ad-
vanced Study, funded by the German Excellence Initiative and the European
Union Seventh Framework Programme under grant agreement no. 291763.

Verifiable Registry (e.g. Distributed Ledger)
to maintain identifiers and schemas

Credential
Schema

(CS)

Credential
Definition

(CD)

Root Authority
(RA) Holder

Verifier

CIA

Verifiable
Credential

Issue
Credential

Verify
CS & CD

Credential Issuing
Authority (CIA)

Missing RA to CIA
Trust Relation

 (Solved in our work)

Ledger write
privilege

Ledger read
privilege Fetch data

Signed data

Trust Verification

Authorized

Fig. 1. Presentation of the ecosystem around Verifiable Credentials (VCs),
highlighting the missing relation between the Root Authority (RA) (Schema
Creator) and the Credential Issuing Authority (CIA) (Definition Creator &
Credential Issuer). Our work specifies a protocol for the establishment of a
trust relation between RAs and CIAs.

the dependence on third parties. Self-Sovereign Identity Man-
agement (SSIM), as a promising approach to user-centric
IdM, enforces user control of attributes to bring a new stage
of independence of administration services. In combination
with a Verifiable Credential (VC), the SSIM scheme enables
protection of private information as well as enhanced trust [3].

In the context of the VC ecosystem, a VC relies on a:
• Credential Schema (CS), which specifies the name,

version, and attributes that will appear in the credential.
• Credential Definition (CD), which references a CS and

specifies cryptographic metadata containing the signa-
tures and data of the Credential Issuing Authority (CIA).

The cryptographic data in a CD will be used for verifying
attributes of an issued credential. Hence, a CD enables a third
party to cryptographically verify the validity of claims made
in a credential by the respective CIA. Therefore, to issue a
credential, a CIA must release a CD beforehand (see Fig. 1).

However, as Root Authorities (RAs) and Credential Issuing
Authorities (CIAs) have equal privileges to write to the veri-
fiable registry, the credential holder remains unable to verify
whether a CIA is authorized to issue a credential. This issue

https://orcid.org/0000-0002-4917-1850
https://orcid.org/0000-0003-1422-9247
https://orcid.org/0000-0002-0006-7761
https://orcid.org/0000-0002-9049-7254
https://orcid.org/0000-0002-4096-2584

remains an unsolved problem in the VC standardization by
the World Wide Web Consortium (W3C) and motivates the
remainder of our work.

To clarify the problem with a use case in the automotive
domain and referring to Fig. 1, assume a vehicle Original
Equipment Manufacturer OEMi as a Root Authority (RA)
(CS issuer). The CS, published by OEMi, would specify
attributes of a credential that is autonomously verified during
a software update by On-Board Equipment (OBE). Without
an authorization scheme for CIAs, every Software Provider
SPj would be able to register CDs that reference the CS of
OEMi. Thus, every SPj would be able to issue credentials to
Software Distribution Services SDSjk (acting as cred. holders).
A vehicle (acting as verifier), manufactured by OEMi, would
autonomously verify certificates of every SDSjk as valid. This
valid verification will cause safety issues for the vehicle if the
software update is malicious.

To solve this issue, we propose an authorization scheme,
called Anonymous Proof of Authorization (A-PoA), which
enables RAs (such as OEMi) to authorize CIAs (such as
contracted SPj) to issue credentials based on CSs that have
been created by RAs. The main feature of our protocol is that
A-PoA keeps the relation between RAs and CIAs anonymous
to entities that verify authorization authenticity of CIAs. To
securely construct this protocol, our A-PoA protocol makes
use of the membership verification feature of the cryptographic
RSA-accumulator, introduced by Camenisch et al. [4]. The
accumulator allows to aggregate elements without reveal-
ing individual membership. Additionally, we apply the Non-
interactive Zero Knowledge Proof of Knowledge of Exponent
(NI-ZKPoKE) construction, introduced by Boneh et al. [5], to
hide the accumulator elements in the membership verification
phase of our protocol. By disguising the membership authen-
tication with the NI-ZKPoKE, A-PoA does not reveal any
structure of accumulator elements, hence, keeping anonymity
of authenticated CIAs.

The evaluation of our work considers the security of the
protocol and the performance. Concerning security, the re-
quirement of integrity applies throughout all phases of the pro-
tocol whereas confidentiality partly applies. The performance
evaluation considers dominating computations during the reg-
istration, authentication, and revocation phases. With the re-
quirement of fast and scalable verification, A-PoA achieves
constant verification times which we assume to happen more
frequently compared to registration or revocation operations.

Summed up, the contribution of our work is as follows:

• In Sec. III, we construct a protocol that enables RAs
(CS creators) to authorize and revoke certain CIAs (CD
creators) to issue credentials.

• Our A-PoA protocol provides efficient verification of CIA
authorization authenticity by leveraging succinct proofs
(see Sec. III-D).

• Our security analysis proves protocol integrity, confiden-
tiality of specific accumulator parameters, and anonymity
of authorized CIAs (see Sec. IV).

Tab. I. Glossary of Notations: (1) Roles, (2) Accumulator Parameters, and
(3) Arithmetic Modulo Primes & Composites.

Symbol Definition

RAi Witness issuing (i) Authorities (CS creator)
CIAh Witness holder (h) Authorities (CD creator)

Hi Credential Holders
V Ni Validator Nodes / Verifiers
CSi Credential Schemas
CDi Credential Definitions

t Discrete time / operation counter
Xt Tails file at time t
X0 Initial tails file at t = 0
xi i-th element of the tails file
wi Witness value associated with i-th element
at Accumulator value at time t

p, q, p′, q′ Large λ-bit prime numbers
Zn n ∈ N, Zn = {1, 2, . . . , n} = ring of integers mod n
Z∗n Set of invertible elements in Zn
G? Generic group of unknown order {(Zn)∗/{±1}}

[-B,B] Range of integers such that |G|/B is negligible
QRn Subgroup of quadratic residues of G?,

contains x ∈ Z∗n, if ∃ y ∈ Z∗n, with y2 ≡ x (mod n)
φ(n) Number of elements in Z∗n,

if p · q = n then φ(n) = (p− 1) · (q − 1)
g, h Generator of a Group G?

• We enable verifiable and anonymous trust hierarchies of
authorities in SSIM-based VC ecosystems.

II. PRELIMINARIES

In this section, we briefly introduce the background of
our work. Sec. II-A shows the construction of cryptographic
accumulators and their properties. The succeeding Sec. II-B in-
troduces Zero-Knowledge (ZK)-protocols, which make up the
basis of the accumulator membership proof of this work. Last,
Sec. II-C presents the main concepts of the VC ecosystem,
where we apply A-PoA. Tab. I introduces roles, accumulator
parameters, and cryptographic notations used throughout our
work.

A. Cryptographic Accumulator

One-way cryptographic accumulators, as initially introduced
in [6], provide the ability to verify set membership of an
element xi ∈ X , with i = {1, 2, . . . , N}, where N is the
number of elements within a set X , without revealing indi-
vidual elements of the set. Throughout this work, we require
our accumulator to be dynamic and positive. Dynamic ac-
cumulators support additive and subtractive operations which
increase and decrease the number of elements of the accumu-
lator respectively [7]. Positive accumulators support proofs of
membership.

Among multiple options of accumulator types, we chose
the Rivest–Shamir–Adleman (RSA)-accumulator of the work
in [4] due to the following reasons:
• An accumulator based on modular exponentiation has

minimal storage requirements and O(1) verification com-
plexity compared to Merkle-tree accumulators [8, 9].

• The RSA-accumulator can be used in combination with
the group Z∗n/{±1}, with the RSA modulus n. More

specifically, it relies on the strong RSA assumption [10],
and the hardness of the discrete log problem [11] which
makes it applicable to succinct Proof of Knowledge (PoK)
of a discrete-log schemes, as introduced in the work [5].

The work in [4] defines the accumulator value as a quadratic
residue at modulo n at time t, with n = p ∗ q as the RSA
modulus. The value a is initialized through the generator
gacc ∈ QRn, where QRn is the subgroup of quadratic residues
of the generic group of unknown order G?. The security of
the RSA-accumulator follows the strong RSA assumption with
primes p, q, p′, and q′, with p = 2p′ + 1 and q = 2q′ + 1.
Accumulator elements are odd positive prime integers because
otherwise, an element could be proven a member of the set
of elements even though it is not (exclusion requirement of
element divisors). Adding an element xi ∈ Xt, with Xt

= {x1, x2, ..., xi}, to the accumulator works by calculating
at+1 = axit mod n. The extraction the respective witness
wt for xi calculates as wt = a

Xt\{xi}
t mod n. A successful

verification of the element xi with its witness wt as a = wxit
mod n equals the latest accumulator value at+1. Deleting an
element xi from the set of elements in the accumulator requires
the knowledge of the factorization of n. The deletion works
by calculating at+1 = a

x−1
i mod φ(n)
t mod n and updating

another witness wt paired with x calculates as wt+1 = wcta
b
t+1

mod n and relies on the Bezout coefficients b and c, with
bx+ cxi = 1.

B. Zero Knowledge Proofs

A PoK allows a prover P to convince a verifier V that
P knows the solution of a hard problem. We say that the
conversation between P and V is a PoK of relation R if the
properties Completeness and Soundness hold. If the property
ZK holds, P can convince V without revealing anything about
the solution [12]. Hence, a Zero-Knowledge Proof (ZKP) must
fulfill the following properties:
• Completeness means that P , knowing the solution, can

successfully convince V .
• Soundness means that P , not knowing a solution, will

fail to convince V .
• Zero Knowledge in a PoK scheme requires V to learn

nothing but the validity of a convincing assertion of P .
Schnorr et al. [13] introduced one of the initial 3-round/Σ

interactive ZK-protocols which proves knowledge of the re-
lation R = {(α, u) ∈ Zq × G) : gα = u}. The commit-
ment scheme used in this protocol is hiding only and there
exist a knowledge extractor as well as simulator model to
prove Soundness and ZK respectively. Important to mention
is that this protocol assumes Honest Verifier Zero-Knowledge
(HVZK) due to the ability of V guessing the challenge during
the protocol.

After generalizing the exponentiation relation of the Schnorr
protocol to a homomorphism in finite abelian groups in [14],
Bangerter et al. apply Schnorr in a group of unknown order
[15]. On top of finding more general structures compatible
with such Σ-protocols, Boneh et al. constructed the secure

and succinct Zero Knowledge Proof of Knowledge of Ex-
ponent (ZKPoKE) protocol for the relation R = {(w ∈
G?, x̂ ∈ [n];x ∈ Z) : w = gx, x mod n = x̂} that leverages
the Pedersen commitment scheme [16] and verifiable delay
functions, introduced in [17], which are secure under the
adaptive root assumption in groups of unknown order. Their
work in [5] provides the respective knowledge extractor and
simulator model to prove Soundness and HVZK. The Pedersen
commitment scheme hides the knowledge statement (Pedersen
hiding property) and provides robustness against computation-
ally unbounded provers (Pedersen binding property). With the
Schnorr and ZKPoKE protocol being HVZK, it is possible
to apply the Fiat-Shamir heuristic to transform the protocols
into one-round/non-interactive protocols that provide ZK in
the random oracle model [18]. As a result, our work takes the
NI-ZKPoKE protocol of the work in [5] to prove membership
of an accumulator element.

C. Ecosystem of Verifiable Credentials

Currently, IRMA and Sovrin count as the two main solutions
that satisfy SSIM principles [19]. SSIM is an IdM solution that
provides users with full control over their own identities. Con-
sidering that an identity consists of multiple identifiers with
respective collections of attributes [20], SSIM enables a user
to collect and manage identities across different domains while
respecting privacy, unlinkability, and selective disclosure.

In this work, we consider the decentralized SSIM approach
of Sovrin. The activities of Sovrin have led to the creation of
the open source framework for SSIM, called Hyperledger Indy
[21]. Indy builds upon the W3C standards of Decentralized
Identifier (DID)s [22] and VCs [3] to implement the VC
ecosystem, as shown in Fig. 1. Indy uses permissioned Dis-
tributed Ledger Technology (DLT) to implement the verifiable
registry. However, it is possible to build a DLT-based SSIM
ecosystem by using public blockchains. This would require
a redesign to determine RA and CIA ledger write privilege
(e.g. voting-based smart contracts). Sovrin relies on consor-
tium agreements to contract organizations that run registry
nodes (Stewards) and authorities with ledger write privilege
(Endorsers).

The VC ecosystem utilizes DIDs to connect credentials
to an entity (VC holder, VC verifier, CIA). DIDs are uni-
versally unique identifiers with a mandatory prefix, method,
and method specific identifier, each separated by colons (e.g.
did:example:123456789abcdefghi). Each DID resolves to a
DID document which specifies security credentials and other
mechanics (associated VCs, claims on the subject, etc.). Au-
thorities with the ability to write to a verifiable registry require
to register their DID at the verifiable registry publicly. VC
holders do not register their DID at the verifiable registry
publicly. To protect their privacy, credential holders can switch
between/bind different DIDs to different credentials to obfus-
cate tracking of their own identity.

To issue a VC, registered authorities (e.g. RA and CIA)
need to register a CS and CD at the verifiable registry. Upon
reception of a VC which links to a CD and CS, a VC holder is

able to prove claims found in the VC in a privacy-preserving
manner [23]. VC verifiers leverage the public registry to
validate references and signatures.

III. APPROACH

This section describes the A-PoA protocol which solves
the missing/undefined trust relation between privileged/trusted
authorities in the VC ecosystem. Sec. III-A provides an
overview of A-PoA and introduces different phases around
accumulator management. Subsequently, Sec. III-B to III-E
go into the details of each protocol phase.

A. A-PoA Protocol Overview

In A-PoA, we associate an element x with a CIA and the
accumulator value at with a specific CS. Since RAs create
CSs, RAs count as accumulator managers. By adding an
element x to the accumulator value at at time t, RA authorizes
a CIA to issue a credential based on the specific CS. During the
CIA registration phase, the CIA, as the creator of the element
x, receives a witness w. A witness w can be extracted from
at for every element x in at. With that, it is possible to verify
the existence of x in at by using the respective witness wt
for x. The element-witness pair (x,w) enables the CIA to
prove membership of x in at, thus, authenticating itself as an
authorized authority to issue a credential based on a specific
CS, which has been created by the accumulator manager RA.
The RA maintains a so-called tails file to monitor authenticated
CIAs in form of elements x. The fact that it is possible to
remove an element x from the accumulator at provides RAs
with the ability to revoke authenticated CIAs at any point in
time.

The RSA-accumulator we use has been introduced in Sec.
II-A. Necessary functions to manage the accumulator can be
seen with the first five functions of Fig. 2. The last two
functions of Fig. 2 generate and verify the NI-ZKPoKE proof
of an element-witness pair (x,w). All functions apply at
different stages throughout A-PoA and will be explained in
the next sections. To enable anonymous access control of CSs
in the VC ecosystem, we divide A-PoA into four main phases:

1) Schema Registration (Sec. III-B) requires a RA to
publish a CS as well as an associated accumulator to
the verifiable registry.

2) CIA Registration and Authorization (Sec. III-C) re-
quires the accumulator manager RA to add an element
to the accumulator and return a witness.

3) CIA Authentication (Sec. III-D) requires the CIA (wit-
ness holder) to generate an authentication proof for the
CD transaction.

4) Maintenance (Sec. III-E) describes incoming addition
and revocation updates of the accumulator which affects
the authorization status of CIAs.

B. Schema Registration

Before we introduce our approach to authorize CIAs, it is
necessary to set up the initial state of the verifiable registry.
As we assume our verifiable registry to be permissioned,

1 . GenAcc (λ,X0) :
2 . p′ ← Genprime(λ) ; q′ ← Genprime(λ)
3 . p← 2 · p′ + 1 ; q ← 2 · q′ + 1

4 . g′acc
R←− G? ; n← p · q

5 . gacc = (g′acc)
2 mod n ; at = g

∏N
i=0;x∈X0

xi
acc mod n

6 . re turn : at
7 . GenAccElement (λ) :
8 . x

R←− Z
9 . re turn : Hprime(x, λ)
1 0 . Add (at, Xt, xi) :
1 1 . i f xi ∈ Xt : re turn : (Xt, at)
1 2 . e l s e :
1 3 . Xt+1 ← Xt ∪ {xi}
1 4 . at+1 = axit mod n
1 5 . re turn : (Xt+1, at+1)
1 6 . Revoke (at, Xt, xi) :
1 7 . i f xi 6∈ Xt : re turn : (Xt, at)
1 8 . e l s e :

1 9 . at+1 = a
x−1
i mod φ(n)
t mod n

2 0 . Xt+1 ← Xt \ {xi}
2 1 . re turn : (Xt+1, at+1)
2 2 . GenWit (xi, Xt, gacc) :
2 3 . wt = g

∏
(Xt\{xi})

acc mod n
2 4 . re turn : wt
2 5 . UpdateWit (wt, xi, rev, at, xdeletedk) :
2 6 . i f rev == true :
2 7 . α · xi + β · xdeletedk = 1 ; (α ,β Bezout)
2 8 . wt+1 = wβt · aαt
2 9 . re turn : wt+1

3 0 . e l s e :
3 1 . wt+1 = wxit mod n
3 2 . re turn : wt+1

3 3 . GenProof (wx, x, at) :
3 4 . k, ρx, ρk

R←− [−B,B] ; z = gxhρx

3 5 . Ag = gkhρk ; Awx = wkx
3 6 . l← Hprime(wx, at, z, Ag, Awx) ; c← H(l)
3 7 . qx ← b(k + c · x)/lc ; qρ ← b(ρk + c · ρx)/lc
3 8 . rx ← (k + c · x) mod l ; rρ ← (ρk + c · ρx) mod l
3 9 . π ← {l, z, gqxhqρ , wqxx , rx, rρ}
4 0 . re turn : π
4 1 . VerifyProof (wx, at, π) :
4 2 . {l, z,Qg, Qwx , rx, rρ} ← π ; c = H(l)
4 3 . Ag ← Qlgg

rxhrρz−c ; Aw ← Qlwxw
rx
x a
−c
t

4 4 . Verify rx, rρ ∈ [l] ; l = Hprime(wx, at, z, Ag, Aw)
4 5 . re turn : {0, 1}

Fig. 2. Pseudocode of the RSA-accumulator generation (GenAcc), element
generation (GenAccElement), addition (Add), subtraction (Revoke) [7], and
witness functions (GenWit & UpdateWit) [4] together with the verification
based on the NI-ZKPoKE protocol (GenProof & VerifyProof) [5].

each node of the verifiable registry may have a number of
pre-defined transactions defining the initial pool of network
nodes. It is assumed that authorities {RA1,RA2, ...,RAi} are
initialized on the verifiable registry with writing permission
through a set of genesis transactions. Each public entity
is initialized through a special transaction on the verifiable
registry disclosing their public DID. It is assumed that with
each initialized CSi, created by RAi, an accumulator at is

Accumulator manager(RAi, public DID) Credential Issuer(CIAh) Verifier(V Ni)

Initialize CSi, at ∈ At, Xt
Register CSi, at at Verifiable Registry

(Xt+1,at+1)←Add(at,Xt,xh)
encasym(xh)←−−−−−−−− xh←GenAccElement(λ)

wh←GenWit(xh,Xt+1,gacc)
encasym(wh)−−−−−−−−→ Store wh

π←GenProof(wh,xh,at+1)
encasym(wh,π)−−−−−−−−−→ {0,1}←VerifyProof(wh,at+1,π)

Fig. 3. A-PoA protocol of membership authorization and verification.

generated and registered at an accumulator registry At on the
verifiable registry (see GenAcc() in Fig. 2). Likewise, RAi

creates an empty or initialized tails file X0 at time t = 0. The
schema registration protocol can be seen in the first phase of
Fig. 3 which stops at the first dotted horizontal line.

C. CIA Registration and Authorization

As the first core part of our work, this section describes
the secure generation of an accumulator element xh and its
corresponding witness wh. The interacting authorities are the
witness issuer RAi (CSi creator & accumulator manager) and
the witness holder CIAh (CDi creator & credential issuer).
Both witness issuer and holder have the privilege to write to
the verifiable registry. We assume that the state of the verifiable
registry is initialized as described in Sec. III-B. To achieve
collision-resistance among accumulator elements, we utilize a
hash function Hprime with prime domain. This hash function
iteratively hashes an input and a counter to generate λ-bit
accumulator elements. Increasing the counter finally creates
an output of the hash function that is prime and co-prime to
φ(n) [5]. Note that this function can be the target of timing
and side-channel attacks. Thus Hprime leverages using dummy
computations to prevent such attacks.

The protocol for authorizing a CIAh to issue credentials
based on CSi (see intermediate phase in Fig. 3) is as follows:
• GenAccElement: CIAh chooses an element x′h ∈ Z at

random and calculates a λ-bit xh ← Hprime(x
′
h, λ) (see

Fig. 2, line 9). CIAh sends xh to RAi.
• Add: RAi adds xh to the local tails file Xt and up-

dates the accumulator (Xt+1, at+1) ← Add(at, Xt, xh).
RAi updates the corresponding accumulator value at
and writes the updated accumulator value at+1 to the
verifiable registry.

• GenWit: RAi calculates a new witness wh ←
GenWit(xh, Xt+1, gacc) and sends wh to CIAh.

As the element xh will be written into the tails file Xt

(granting CIAh access to reference CSi) which is saved in the
wallet of RAi, xh values need to be a pairwise distinct prime
values to ensure collision-resistance as described by Barić et
al. in [10]. The tails file Xt of RAi contains a mapping of the
DID of CIAh to the value aggregated in the accumulator at.

As RAi saves Xt in its own private wallet, witnesses
will need to be recomputed every time a value is added or
deleted from the accumulator. This is why accumulator updates
introduce communication overhead as RAi needs to multicast

updated witnesses back to each CIAh. Sec. III-E provides
the details of additive and subtractive accumulator updates.
As our focus lies on efficient verification where authorities
are assumed to have sufficient computational power in the
network, computational overhead is negligible.

D. CIA Authentication

As the second core part of our work, this section introduces
authentication of CIAh. A successful authentication results in
authorization of CIAh to perform CDi transactions, enabling
credential issuing. The third phase of Fig. 3 illustrates this
phase of our protocol with the interaction between CIAh and
VNi, acting as prover and verifier respectively.

When intending to issue credentials, CIAh creates a CDi

transaction with a valid NI-ZKPoKE proof of knowledge
of xh. The function GenProof() of Fig. 2 shows the proof
construction which has been developed in [5]. Including the
NI-ZKPoKE proof which proves membership of xh in at,
a CDi transaction is sent to the verifiable registry. Here,
a validator node VNi verifies if CIAh is entitled to issue
credentials referencing a CSi of RAi. This verification is
achieved by verifying the NI-ZKPoKE proof. The NI-ZKPoKE
proof does not disclose the actual value xh and preserves
confidentiality of the parameter xh. Hence, there is no loss
of privacy for CIAh. Line 34 of Fig. 2 indicates how the
Pedersen commitment hides xh. Again, non-interactivity is
achieved through leveraging the Fiat-Shamir heuristic [24],
which models the unpredictability of the random choices of
VNi through the output of a hash-function. Thus, the protocol
for proving membership of xh in at is the following:

• GenProof: CIAh generates the proof
π ← GenProof (wh, xh, at), where xh ∈ Xt, and sends
(wh, π) to the verifier VNi.

• VerifyProof: VNi verifies the membership by invoking
{0, 1} ← VerifyProof (wh, at, π).

Once VNi verifies the membership of CIAh, CDi is written
to the verifiable registry, effectively enabling CIAh to issue
credentials based on a CSi issued by RAi. An important
remark is that the authentication of CIAh should be based
on the NI-ZKPoKE proof only. Likewise, the privilege of a
CDi write transaction should rely on a valid NI-ZKPoKE
proof. This means that CIAh must take a random DID for
the communication with VNi instead of using the publicly
known and trusted DID.

E. Maintenance

Updating the witness of an authority has to be done each
time a member is added or revoked from the accumulator tails
file Xt. The witnesses can only be updated by RAi. Therefore,
the accumulator manager/RAi sends an update message to all
the members that are a part of the updated accumulator at+1.
We distinguish two cases for the witness update protocol:

Addition: UpdateWit(rev=false) updates a witness wt when
a member is added to Xt. Therefore, UpdateWit adds the
new element to the witness wt, which itself is an accumulator
value with an element less compared to the actual accumulator
at. Addition of elements {xi+1, xi+2, ..., xj} (members of the
accumulator) to the tails file Xt = {x1, x2, ..., xi} requires
execution of Xt+1 = Xt ∪ {xi+1, xi+2, ..., xj}. This can be
seen in line 13 of Fig. 2. With Xt, the witness owner can
calculate each witness by calculating wt = g

∏
(Xt+1\{xi})

acc

individually. After the updates, each CIAh receives their
updated witness value.

Revocation: With the accumulator scheme, authority
RAi is able to revoke the trust from CIAh by invoking
(Xt+1, at+1) ← Revoke(at, Xt, xh). This removes the ele-
ment xh associated to CIAh from the tails file Xt. Next, a new
accumulator value is computed and written to the verifiable
registry, effectively revoking the ability for CIAh to prove its
accumulator membership to the verifier VNi or the credential
holder. Additionally, CIAh looses its ability to further issue
credentials. Note that all credentials, which have already been
issued during the time where CIAh was authorized, are only
invalidated if the credential contains the proof that allows
credential holders to verify the validity (CS authorization) of
RAi.

Efficiently updating the membership witness upon deletion
of xdeletedk can be achieved by calling UpdateWit(rev=true).
This function call removes xdeletedk from the accumulator by
calculating the Bezout coefficients between xi and xdeletedk

as described in [25]. The Bezout coefficients always exist
since the domain Z∗N of the RSA-accumulator contains odd
prime integers only. Thus, the updated membership witness
wt+1 can be computed such that the Bezout coefficients α
and β solve the linear equation α · xi + β · xdeletedk = 1 for
gcd(xi, x

deleted
k) = 1. Lines 27 and 28 of Fig. 2 show the

calculation of the Bezout coefficients and the witness update.
A complete description and correctness proof of the preceding
relation is provided in [25].

IV. SECURITY ANALYSIS

The security analysis focuses on protocol integrity and
accumulator element confidentiality. It first introduces the
adversary model together with accessible system parameters
of (1) the accumulator and (2) the communication protocols.
The analysis of all parameters references the definitions under
use and proves the respective security assumption that apply
to the parameters.

We assume a safe accumulator manager that does not share
the tails file over the network. Additionally, no hostile network
participant is able to forge the private keys associated to DIDs

in use. Network communication is secured using authenticated
encryption and sessions keys are random to prevent replay
attacks.

A. Adversary Model

Throughout the security analysis, we assume to have the
following models of adversaries:
• A1 (Network Eavesdropper): Suppose a hostile network

participant, acting asA1, intends to eavesdrop and modify
or decrypt all messages m exchanged throughout the
introduced protocols.

• A2 (Unforgeability): Suppose A2 is a malicious adver-
sary, trying to forge a valid proof of an invalid identity.
A2’s efforts can be based on previously seen witness pairs
(x,w) (only w is known by A2) and accumulator values
a.

• A3 (Cheating Verifier): Suppose A3 is a malicious Veri-
fier V that verifies the authentication proofs of a prover
P . Then, A3 does not learn anything else than the validity
of the statement proven by P .

Theorem 1. Suppose authenticated encryption of messages
throughout the communication protocols holds, then the au-
thentication scheme introduced above is secure against A1

intending to eavesdrop and modify or decrypt messages m.

Proof Supposing an adversary B that is able to provide A1

with the private keys (through guessing or collision) associated
with the DIDs used during message exchange contradicts
the security assumptions of authenticated encryption. Keys
used in authenticated encryption are based on asymmetric
cryptography which relies on e.g. the strong RSA assumption
(introduced below).

Definition 1. (Strong RSA assumption in generic groups of
unknown order [5]) There is no probabilistic polynomial-time
algorithm P that outputs w and an odd prime x such that
gx ≡ u (mod n), except with negligible probability:

PR

[
wx ≡ g : G?

R←− Gen(λ), g
R←− G?

w, x ∈ G? × Z←− A2(G?, g)

]
< negl(λ)

Theorem 2. Under the strong RSA assumption, the above
mentioned RSA accumulator used in our scheme is secure
against A2 and forging of membership.

Proof In order to prove security against adversary A2,
suppose there exists an adversary B that is able to find
a collision, hence obtaining {x1, x2, ..., xn, x′, a′} such that
(a′)x

′
= gx1,...,xn (mod n). A2 is given access to all public

values initiated in the generation phase. Leveraging B, A2

can break the RSA assumption as described in [10]. Let
x = x′ and r = x1, ..., xn. Compute α, β ∈ Z as Bezout
coefficients for α · r + β · x′ = 1. Set w = (a′)αgβ satisfying
wx ≡ g. This indicates that if a value xi is once revoked
from the accumulator, the entity authorized before is unable
to efficiently obtain membership without authentication.

Tab. II. Mean execution times (ms) of A-PoA with a 2048-Bit RSA-
accumulator (λ = 128), k=50 elements, and 128-Bit hashes.

Protocol Function Time (ms) COM Big O

Authorization
Prime Gen. 309.81 k O(n)

Acc. Gen. 88.80 1 O(1)
Wit. Gen. 4383.60 k O(n)

Authentication GenProof 40.06 1 O(1)
VerifyProof 23.42 0

Revocation Acc. Revoke 2244.85 (0-k) O(n)∑
Authorization N/A 4782.21 2k + 1 O(n)∑
Authentication N/A 63.48 1 O(1)∑
Revocation N/A 2244.85 (0-(k-1)) O(n)

Theorem 3. Our scheme is secure against A3, if the one-time
interaction between P and V can be simulated through an
efficient simulator S and the Fiat-Shamir heuristic applies.

Proof (Sketch). In order to prove security against A3, we
rely on the simulator introduced by Boneh et al. in [5]. It is
argued that the GenProof function can be efficiently simulated
by S, outputting {z′, Q′g, Q′wx , r

′
x, r
′
ρ} which is statistically

indistinguishable from the real protocol/transcript execution
{z,Qg, Qwx , rx, rρ}. Hence, transcript Tsim generated through
S is indistinguishable from Treal, satisfying the HVZK prop-
erty for a proof of knowledge as described in Sec. II-B. Note
that the NI-ZKPoKE is general zero-knowledge in the random
oracle through the Fiat-Shamir heuristic. The reason for this is
the replacement of the challenge with a hash which prevents
A3 from guessing the challenge in advance.

V. EVALUATION

This evaluation considers three aspects of our A-PoA con-
struction: (1) aggregated protocol times, (2) scalability, and (3)
privacy. After introducing hardware specifications and selected
Bit-sizes, we consider protocol performance and scalability in
Sec. V-A and privacy in Sec. V-B.

A. Timing Behavior of the RSA-Accumulator and Protocols

The performance evaluation has been conducted using a
Lenovo Thinkpad T480s with 16 GB of RAM and a 1.90 GHz
Intel(R) Core(TM) i7-8650U CPU and we used Python to
implement A-PoA. All values collected during the evaluation
of the accumulator data structure and protocols faced 100
repetitions and subsequent averaging to reduce deviations of
the results.

Concerning the selection of parameters, our work takes
accumulators with an RSA modulus n with 1024-Bit and
2048-Bit sizes, requiring λ = 80-Bit and λ = 128-Bit primes
respectively. The sizes of the parameters of the modulus n
and primes do not only affect the accumulator functions, but
the NI-ZKPoKE protocol and its proof size, calculating as
πsize = 3 · nsize−bit + 3 ·Hashsize−bit. This means that taking
the generic group of unknown order G? = Z∗n \ {±1} with a
2048-Bit modulus n and a 128-Bit hash-function (Hprime, H),
the NI-ZKPoKE proof size πsize calculates to 861 Bytes for the

1 10 20 30 40 50 100 1k
0

20

40

60

Number of elements xi of the accumulator

Ti
m

e
(m

s)

VerifyProof
Hprime

1 10 20 30 40 50 100 1k
0

20

40

60
GenProof
Hprime

Fig. 4. GenProof (left, lightgray) and VerifyProof (right, gray) execution times
(ms) of the NI-ZKPoKE protocol with 128-Bit polynomial time Hprime hash
function and the RSA-accumulator (2048-Bit).

2048-Bit RSA-accumulator. The formula of πsize derives from
the ZK proof with parameters {l, z,Qg, Qwx , rx, rρ}, where z,
Qg , and Qwx depend on the modulo n calculation (2048-Bit
n), l depends on the output size of Hprime which causes rx
and rρ (remainders) to remain below l. Switching the modulo
size of the RSA-accumulator and the hash output size affects
πsize accordingly.

Protocol Times - Tab. II shows execution times of functions
of the authorization, authentication, and revocation protocols
for managing access to a CS. Additionally, the last column pro-
vides the communication overhead presented by each function.
The evaluation of protocol times is based on an accumulator
with k = 50 elements xi. This decision enables comparison
to the mean computation times of the protocols (revocation,
verification) introduced by Hölzl et al. in [26] which we further
discuss in Sec. VI. Regarding the communication overhead of
50 CIAs participating in the protocol requires 50 messages
of each CIAh to the accumulator manager RAi, 1 message
of RAi to the verifiable registry, and again, 50 messages to
communicate each witness wh back to every CIAh. The com-
munication complexity of the revocation protocol depends on
the application and the decision whether to notify CIAs. Due
to the non-interactivity feature of the NI-ZKPoKE protocol,
the authenticity verification is efficient with a single message.

Proof Verification - An evaluation of different numbers of
elements aggregated in the accumulator with respect to the
corresponding verification and proof creation time can be
found in Fig. 4. On average and without considering Hprime

(volatility caused by non-deterministic behavior), the proof
verification is 42% faster than the proof creation for the
2048-Bit RSA modulus n with a hash size of 128-Bit and
a security value λ = 128. We assume that the accumulator
value has already been fetched from the verifiable registry
and the verification is restricted to evaluating the VerifyProof()
algorithm introduced in Fig. 2. The values depicted in Fig. 4
are averaged over 100 executions. Notably, the verification
speed is constant (O(1)) for constant system parameters and

10 20 30 40 50

0

20

40

60

80

Number of elements added to a witness

Ti
m

e
(m

s)

RSA 2048
RSA 1024

Fig. 5. Duration (ms) of adding elements xi to an already existing witness
wt for a single holder witness update (numbers averaged by 100 repetitions).

does not depend on the number of elements aggregated in
the accumulator. The times of executing Hprime vary and the
optimization of this function goes beyond the scope of this
work.

Witness Update - In our construction, the accumulator man-
ager RA authorizes CIAs to access CSs through broadcasting
witness updates back to authorized CIAs. The efficiency of the
witness update operation depends on the number of elements
that are added to or deleted from the accumulator at a given
point in time. Addition of 10 elements to the witness of an
authorized entity takes around 20 ms with a 2048-Bit RSA
modulus n and around 3.5 ms by using a 1024-Bit RSA
modulus n (see Fig. 5). Addition and deletion of CIAs does
not occur very often as CIAs itself maintain their issued
certificates at least the expiry time (90 days validity of Let’s
Encrypt certificates) [27]. Nevertheless, the communication
overhead in A-PoA is a bottleneck that could be solved by
having CIAs update their witnesses on their own or by having
them rely on third parties. With our anonymity requirement,
outsourcing of protocol computations is not possible and
the bottleneck remains. However, leveraging more complex
accumulators such as the Braavos accumulator of the work
in [7] do not require updates upon addition of elements (but
has weaker security guarantees) and we consider the usage of
such accumulators as future work.

B. Privacy

Resulting from specifications of A-PoA, no entity except
of the accumulator manager/RA and the authenticated CIA
can reveal or track information of the CIA witness pair
(x,w). The reason for this is the confidential communication
between the RA and CIA authorities as well as the accumulator
data structure itself. The aggregated elements in the RSA-
accumulator are secure under the discrete logarithm problem
and, by respecting the strong RSA assumption, face negligible
collision chances. When proving membership of a CIA to
an accumulator, the NI-ZKPoKE proof hides the accumulator
element without revealing any structure of it. It is important
to notice that the CIA must constantly switch its DIDs, even

when communicating to the same entity periodically to prevent
information tracking. This way, the authorized/privileged CIA
remains anonymous.

VI. RELATED WORK

The work of Hölzl et al. [28] leverages a so-called dis-
posable dynamic accumulator in the context of a pseudonym-
based signature scheme where pseudonyms are represented by
tokens. The accumulator data structure of their work proves
the validity of these tokens which make up the accumulator
elements. In a similar way to our validity management of
authorities per CS, the Electronic Identity (eID) issuer in
[28] creates a single accumulator per secure element which
handles credential storage. One-time verification tokens as
pseudonyms and accumulator elements establish the privacy-
preserving functionality, whereas in our work, accumulator
computations and ZK-proofs provide anonymity.

The evaluation of the work of Hölzl et al. considers gen-
eration, binding, verification, and update times of a RSA-
accumulator in the context of mobile eID management. Similar
to their work, our authorization and revocation methods in-
crease/decrease linearly depending on the number of elements
in use. Fig. 5 shows this behavior for a changing number
of elements xi. By contrast, our execution times of the
NI-ZKPoKE proof generation and verification remain constant
(see Fig. 4). Our NI-ZKPoKE verification times are up to 25%
faster compared to the verification times in the work [28].

In [29], Reyzin et al. utilize asynchronous accumulators
with backwards compatibility to build a distributed Public Key
Infrastructure (PKI). In their work, the accumulator is used to
reference and store public keys of users. The witness value
and the public key allow validity checking of security key
pairs. However, compared to our work and with regard to a
PKI, our concept is able to leverage hierarchies and anonymity
proofs to manage user credentials with absolute privacy and
user-centric control of credentials.

VII. CONCLUSION

Our secure A-PoA protocol enables RA authorities (CS
issuers) with the ability to authorize or revoke CIAs (CD
issuers) to reference CSs of the RAs. Hence, A-PoA enables
verifiable hierarchies between trusted authorities in a SSIM-
based VC-compatible ecosystem. Our scheme is based on a
RSA-accumulator, providing authorization based on the accu-
mulator membership, and a privacy-preserving NI-ZKPoKE
protocol, which proves that an entity is member of a cer-
tain accumulator without revealing any information about
the membership relation. The NI-ZKPoKE protocol enables
resource-efficient and succinct verification without additional
communication overhead. The verification time is constant and
does not depend on the number of elements aggregated in the
accumulator.

REFERENCES

[1] M. Isaac and S. Frenkel, “Facebook security breach
exposes accounts of 50 million users,” The New York
Times, vol. 28, 2018.

[2] P. Dunphy and F. A. Petitcolas, “A first look at identity
management schemes on the blockchain,” IEEE Security
& Privacy, vol. 16, no. 4, pp. 20–29, 2018.

[3] M. Sporny, D. Longley, and D. Chadwick, “Verifiable
credentials data model 1.0,” W3C, W3C Candidate Rec-
ommendation, March, 2019.

[4] J. Camenisch and A. Lysyanskaya, “Dynamic accumula-
tors and application to efficient revocation of anonymous
credentials,” in Annual International Cryptology Confer-
ence. Springer, 2002, pp. 61–76.

[5] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques
for accumulators with applications to iops and stateless
blockchains,” in Annual International Cryptology Con-
ference. Springer, 2019, pp. 561–586.

[6] J. Benaloh and M. De Mare, “One-way accumulators: A
decentralized alternative to digital signatures,” in Work-
shop on the Theory and Application of Cryptographic
Techniques. Springer, 1993, pp. 274–285.

[7] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, A. Lysyan-
skaya, L. Reyzin, K. Samelin, and S. Yakoubov, “Accu-
mulators with applications to anonymity-preserving revo-
cation,” in 2017 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2017, pp. 301–315.

[8] M. P. Jhanwar and P. R. Tiwari, “Trading accumulation
size for witness size: A Merkle tree based universal ac-
cumulator via subset differences.” IACR Cryptol. ePrint
Arch., vol. 2019, p. 1186, 2019.

[9] J. Lapon, M. Kohlweiss, B. De Decker, and V. Naessens,
“Performance analysis of accumulator-based revocation
mechanisms,” in IFIP International Information Security
Conference. Springer, 2010, pp. 289–301.

[10] N. Barić and B. Pfitzmann, “Collision-free accumulators
and fail-stop signature schemes without trees,” in Inter-
national conference on the theory and applications of
cryptographic techniques. Springer, 1997, pp. 480–494.

[11] K. S. McCurley, “The discrete logarithm problem,” in
Proc. of Symp. in Applied Math, vol. 42. USA, 1990,
pp. 49–74.

[12] S. Goldwasser, S. Micali, and C. Rackoff, “The knowl-
edge complexity of interactive proof systems,” SIAM
Journal on computing, vol. 18, no. 1, pp. 186–208, 1989.

[13] C.-P. Schnorr, “Efficient identification and signatures for
smart cards,” in Conference on the Theory and Applica-
tion of Cryptology. Springer, 1989, pp. 239–252.

[14] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure
and optimally efficient multi-authority election scheme,”
European transactions on Telecommunications, vol. 8,
no. 5, pp. 481–490, 1997.

[15] E. Bangerter, J. Camenisch, and S. Krenn, “Efficiency
limitations for σ-protocols for group homomorphisms,”
in Theory of Cryptography Conference. Springer, 2010.

[16] L. Chen and T. P. Pedersen, “New group signature
schemes,” in Workshop on the Theory and Application
of of Cryptographic Techniques. Springer, 1994, pp.
171–181.

[17] B. Wesolowski, “Efficient verifiable delay functions,”
Journal of Cryptology, pp. 1–35, 2020.

[18] R. Canetti, O. Goldreich, and S. Halevi, “The random
oracle methodology, revisited,” Journal of the ACM
(JACM), vol. 51, no. 4, pp. 557–594, 2004.

[19] J. C. Nauta and R. Joosten, “Self-sovereign identity:
A comparison of irma and sovrin,” Technical Report
TNO2019R11011, Tech. Rep., 2019.

[20] A. Tobin and D. Reed, “The inevitable rise of self-
sovereign identity,” The Sovrin Foundation, vol. 29, no.
2016, 2016.

[21] T. L. Foundation, “Hyperledger Indy Project,”
https://www.hyperledger.org/projects/hyperledger-indy,
[Online; accessed 12-December-2020].

[22] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant,
M. Sabadello, and J. Holt, “Decentralized identifiers
(dids) v1. 0,” Draft Community Group Report, 2020.

[23] M. Chase, C. Ganesh, and P. Mohassel, “Efficient zero-
knowledge proof of algebraic and non-algebraic state-
ments with applications to privacy preserving creden-
tials,” in Annual International Cryptology Conference.
Springer, 2016, pp. 499–530.

[24] A. Fiat and A. Shamir, “How to prove yourself: Practical
solutions to identification and signature problems,” in
Conference on the theory and application of crypto-
graphic techniques. Springer, 1986, pp. 186–194.

[25] J. Li, N. Li, and R. Xue, “Universal accumulators with
efficient nonmembership proofs,” in International Con-
ference on Applied Cryptography and Network Security.
Springer, 2007, pp. 253–269.

[26] M. Hölzl, M. Roland, O. Mir, and R. Mayrhofer, “Bridg-
ing the gap in privacy-preserving revocation: practical
and scalable revocation of mobile eIDs,” in Proceedings
of the 33rd Annual ACM Symposium on Applied Com-
puting, 2018, pp. 1601–1609.

[27] C. M. Bruhner and O. Linnarsson, “Relay racing with
x. 509 mayflies: An analysis of certificate replacements
and validity periods in https certificate logs,” 2020.

[28] M. Hölzl, M. Roland, O. Mir, and R. Mayrhofer, “Dis-
posable dynamic accumulators: toward practical privacy-
preserving mobile eids with scalable revocation,” Inter-
national Journal of Information Security, pp. 1–17, 2019.

[29] L. Reyzin and S. Yakoubov, “Efficient asynchronous
accumulators for distributed PKI,” in International Con-
ference on Security and Cryptography for Networks.
Springer, 2016, pp. 292–309.

https://www.hyperledger.org/projects/hyperledger-indy

	Introduction
	Preliminaries
	Cryptographic Accumulator
	Zero Knowledge Proofs
	Ecosystem of Verifiable Credentials

	Approach
	A-PoA Protocol Overview
	Schema Registration
	cia Registration and Authorization
	cia Authentication
	Maintenance

	Security Analysis
	Adversary Model

	Evaluation
	Timing Behavior of the rsa-Accumulator and Protocols
	Privacy

	Related Work
	Conclusion

