
A-MaGe: Atomic Mashup Generator for the Web
of Things

Ege Korkan*1[0000−0003−4910−4962], Fady Salama1[0000−0001−9225−6625],
Sebastian Kaebisch2[0000−0002−0544−4204], and Sebastian

Steinhorst1[0000−0002−4096−2584]

1 Technical University of Munich, Munich, Germany {ege.korkan, fady.salama,
sebastian.steinhorst}@tum.de

2 Siemens AG, Munich, Germany sebastian.kaebisch@siemens.com

Abstract. Individually, Internet of Things (IoT) devices are often not
able to achieve complex functionalities and, therefore, need to be com-
posed together into useful mashups. However, given the current fragmen-
tation of the IoT domain, designing a mashup is still a manual task that
is time-consuming and error-prone. The introduction of the Thing De-
scription (TD) from the World Wide Web Consortium (W3C) is meant
to facilitate the interoperability between IoT devices and platforms by
providing a standardized format to describe the network interfacing of
entities, called Things, participating in the Web of Things (WoT). Fur-
thermore, the System Description (SD) extension introduces the notion
of Atomic Mashups (AMs), small mashup building blocks that are easier
to design. However, designing AMs remains a manual task and, given the
rising complexity of IoT devices, manually exploring the resulting design
space is infeasible. In this paper, we introduce A-MaGe: a method and
its open-source implementation that takes the TDs as an input and uses
predefined templates, user-configurable rules, semantic annotation filter-
ing and natural language processing to automatically explore and reduce
the design space. SD-compliant UML Sequence Diagrams of the resulting
mashups are presented to the human agent for further selection to gen-
erate the SD of the mashup as well as implementation code based on the
W3C WoT Scripting API. We show that the generation process is fast,
allowing multiple iterations by the human agent to increase reduction
and we evaluate the filtering power of different filters and constraints.
Thus, in combination with the TD standard, our method ensures easy
composition of services in heterogeneous environments.

Keywords: Web of Things · Mashup Composition

1 Introduction

The domain of Internet of Things (IoT) has been rapidly growing, with the num-
ber of connected devices projected to increase to 50 billion devices by 2030 [1].
With this vast increase comes the challenge of connecting devices from differ-
ent vendors. To facilitate it, vendors offer IoT platforms, software that handles

2 E. Korkan et al.

A-MaGe
{
TD

{

{
TD

{

{
TD

{
SD

Templates and
filtering options

Generate Mashups

Generate UML
Sequence Diagrams
for Selection

Automated SD and Code Generation

Agent Device 1 Device 2

Select
desired options

Select
desired mashup

Fig. 1: A-MaGe takes Thing Descriptions (TDs) and based on constraints and
filters, Atomic Mashups are generated and presented to the human agent in form
of UML Sequence Diagrams. The human agent can then choose to generate the
System Description (SD) and the code for the selected mashup.

the communication of different devices and exposes the functionalities. How-
ever, there are currently over 620 different IoT platforms on the market [2] and
this causes a high fragmentation in the IoT domain as well as a difficulty in
developing applications that leverage functionalities from the resulting silos.

To address this problem, the World Wide Web Consortium (W3C) proposed
the Web of Things (WoT) architecture as a standardized means to allow the
interoperability of different IoT platforms [3]. The main building block of the
WoT architecture is the Thing Description (TD) [4], which is a JSON-Linked
Data (JSON-LD) document [5] that is both machine- and human-readable and
describes the network-interfacing of the interaction affordances offered by any
IoT entity, called a Thing in the context of this paper.

However, TDs have no means to describe how a system of Things interacts
together to offer some functionality. To this end, the System Description (SD)
was proposed [6], a superset of the TD that offers additional keywords for de-
scribing such systems, called mashups in the context of this paper. The SD also
specifies a second representation format for mashups using a subset of the Uni-
fied Modeling Language (UML) Sequence Diagrams, as well as an algorithm for
converting one representation to the other. To describe complex functionalities,
the SD uses a sequence of building blocks that together form an execution se-
quence called a Path. The smallest building block of a Path is an Atomic Mashup
(AM), in which a mashup controller performs a specific number of interactions,
waits asynchronously for the results of these interactions and, based on these
inputs, performs a series of asynchronous output interactions.

A-MaGe: Atomic Mashup Generator for the Web of Things 3

1.1 Problem Statement

While the TDs offer an abstraction level that eases the process of designing and
creating AMs, the process is still a manual task in which the developer needs to
go through the whole collection of TDs to find the interaction affordances that
are needed and suitable for the desired functionalities. Furthermore, a better
written and annotated TD that exposes more metadata about the TD and its
interaction affordances improves the understanding, but the added metadata
introduces more information that a human agent has to manually process and
consider when designing mashups. And finally, the resulting design space to be
explored increases exponentially with the total number of interaction affordances
in a system. Thus, the increasing complexity and capabilities of IoT devices, the
increasing complexity of the written TDs as well as the increasing complexity of
the desired mashups translate into the manual exploration of the design space,
being both time-consuming and error prone. There are solutions to automate
the generation of mashups which are discussed in Section 4, but to the best of
our knowledge, none are centered around the TD standard without extending its
standardized core vocabulary. Hence, the generation of mashups using the core
TD vocabulary remains unexplored.

1.2 Contributions

In this paper we introduce A-MaGe, a method and a corresponding implementa-
tion as a solution for system designers to automatically reduce the design space
that needs to be explored manually as well as automate the creation of AMs as
illustrated in Figure 1. In particular, we make the following contributions:

– We introduce a method that takes TDs as an input and generates AMs
that conform to predefined templates as well as user-defined constraints and
filters leading to a reduction in the design space, introduced in Section 2.

– We propose a tool that uses the above-mentioned method to generate SD-
compliant UML Sequence diagrams, allowing further selection of the AMs
for automatic SD and code generation based on SD-algorithms.

– We show that the above-mentioned method achieves a design space reduction
of several orders of magnitude, while being sufficiently fast for a human agent
to allow multiple iterations of filtering to further reduce the design space,
explained in Section 3.

Section 4 explores other approaches and related work for mashup composition
and Section 5 concludes this paper.

2 A-MaGe Methodology

A-MaGe: an Atomic Mashup Generator is a method that is able to automatically
explore and reduce the possible design space of Atomic Mashups (AM) given a
set of TDs as an input with minimal direct intervention from a human agent. It
relies on the AM abstraction defined in the SD which we describe in the following
paragraph.

4 E. Korkan et al.

Atomic Mashup: A unique building block defined by the SD is the AM, which
describes an undividable execution sequence that performs a specific function-
ality, similar to atomic operations in programming. An AM is defined as an
unordered sequence of interactions performed by a mashup controller, called
receive/input interactions (readproperty, observeproperty, subscribeevent or in-
vokeaction), followed by an unordered sequence of interactions performed called
send/output interactions (writeproperty or invokeaction). This makes it possible
to describe synchronous and asynchronous sensing-actuating behaviors of a sys-
tem and can then be combined using the aforementioned building blocks such
as loops and conditional execution to achieve any desired system behaviour.

Given a system of Things, we can define the set all interaction affordances
that can be considered as inputs as Intot and similarly Outtot for output inter-
actions. For AMs with a specific input length lin and specific output length lout,
we can calculate the resulting design space using the following equation:

C(|Intot|, lin) · C(|Outtot|, lout) =
|Intot|!|Outtot|!

lin!lout!(|Intot| − lin)!(|Outtot| − lout)!
(1)

with C(a, b) denoting the combination formula.
On the other hand, the design space of mashups in general can be used with the
permutations function:

P (n, k) =
|A|!

(|A| − k)!
(2)

with |A| denoting the number of interaction affordances in a system and k the
mashup length respectively.

Looking at an example of a system with four Things exposing five input
and five output interactions each and a desired mashup with two input and two
output interactions, meaning that |A| = 40, |Intot| = |Outtot| = 20, k = 4,
lin = lout = 2. Using these parameters, we can calculate using Equation 1 that
the maximum number of AMs that can be generated is 36100, in contrast to
2193360 mashups in total as per Equation 2, which means that in this case there
is a 98.35% reduction in the design space that needs to be explored manually.

2.1 Design Space Reduction Using Templates and Constraints

A human agent designing a mashup may have some prior expectations and con-
straints on how the mashup should operate or such constraints may arise during
the design phase, which can be added incrementally. A computer can take ad-
vantage of these constraints and expectations to further reduce the design space
and generate mashups that adhere to them, making it easier for a human agent
to review and evaluate the results. With A-MaGe, we propose:

1. Filtering the considered mashup space by limiting the number of Things or
interactions considered for input or output

2. Matching input and output interactions who use the same vocabulary
3. Semantic context matching of input and output interactions, meaning only

interactions with annotations from the same vocabulary are considered.

A-MaGe: Atomic Mashup Generator for the Web of Things 5

4. Data type based filters to match input and output interactions based on
their Data Schemas or to filter out an interaction based on its type

5. Template rules to choose how the controller receives its inputs in order to
limit the InputTypes
– Subscription-driven template: The mashup controller starts by sub-

scribing to events or observing properties from input Things and waits
asynchronously for the data pushes.

– Read-driven template: The mashup controller starts by reading a set
of properties from input Things.

– Action-driven template: The mashup controller starts by invoking a
set of actions in input Things and receives the interactions’ outputs.

– Allowing mashups that mix the above-mentioned templates or not. Mixed
template mashups include multiple input interaction types.

6. matching input and output interactions filters using Natural Language Pro-
cessing (NLP) based on the similarity of their names using a similarity score
Word2Vec model [7] and based on the similarity of their descriptions by aug-
menting the Word2Vec approach using Word Mover’s Distance algorithm [8].

7. filtering mashups based on specific semantic annotations and/or interactions,
which can be described using Linear Temporal Logic (LTL) formulas Fφ and
G¬φ respectively. Our method proposes three path variables φ:
(a) φ1: An interaction from a TD, that was annotated on the top-level with

a specific semantic annotation, was performed.
(b) φ2: An interaction with a specified semantic annotation was performed.
(c) φ3: A specific interaction was performed.
To allow a granular selection, these constraints can be specified individually
to input, output, and input/output Things in case of φ1 as well as to each
type of input and output interactions in case of φ2 and φ3, respectively.

Based on the AM concept, the filters and constraints provided by the human
agent, our method generates all the possible mashups. These are then presented
to the human agent in the form of an SD-compliant UML Sequence Diagram.
The human agent can view them and further adjust the filters and constraints.
When the desired mashup is found, the human agent can then choose to generate
the equivalent SD. The Sequence Diagram is then converted to an SD document
using the SD conversion algorithm and the human agent can then automatically
generate executable code according to the WoT Scripting API [9].

3 Evaluation

To evaluate A-MaGe, we implemented our proposed method in the WoT API
Development Enviroment (WADE) 3 [10]. However, our method does not rely
on any specific programming language or framework to function. We evaluate
the viability of our approach by looking at the execution time of our method
and explore the filtering power of different user-defined constraints. Therefore,
we perform two different tests4, which are described in detail in this section.
3 https://github.com/tum-esi/wade
4 Both tests are done using a computer with an Intel© CoreTM i7-8750H Processor,
8 GB of DDR4-2666 memory, Windows 10 Home 64-bit operating system

https://github.com/tum-esi/wade

6 E. Korkan et al.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

200.0

Number of available Interactions

Measurements Average Execution Time

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3
E

xe
cu

tio
n

T
im

e
in

m
s

(a) Mashup Lenght: 2 (b) Mashup Length: 4

Fig. 2: We perform a number of measurements for mashups with the lengths
two, four, six, eight and for interaction pools with sizes between the size of the
mashup and 20 interactions. Note: The y-axis of Figure b is in logarithmic scale.

Testing execution time: In this test, we estimate the upper bound of exe-
cution time needed to generate all mashups given a specific mashup length and
number of available interactions. Hence, we run A-MaGe with all templates en-
abled, as well as allowing mixed template mashups, but without any further
constraints or filters to be able to generate the maximum number of mashups.
We perform test runs for mashups with the lengths two, four, six, eight and for
interaction pools with sizes between the size of the mashup and 20 interactions.
The execution time for each specific test is measured 20 times to account for
execution time fluctuations and the results of measurements for the mashups
length of two and four can be viewed in Figure 2.

Given that intended scope is small AMs and given these findings, we conclude
that our method is viable and is able to generate an exhaustive list of all mashups
conforming to certain constraints with acceptable speeds. The process of the
human agent further adjusting the filters and constraints and re-running the
code takes at most a few seconds, allowing for multiple iterations of filtering and
generation in a small span of time.

Testing filtering power: We also perform a set of measurements to test the
filtering power of different filters and constraints in different scenarios. We se-
lected a number of filters on three different systems from three different domains:
smart agriculture, smart home and smart industry. Each system differs in the
devices used as well as the variety in the input and output interactions or multi-
plicity of Things. For each of these setups, we apply a selected number of filters
and constraints one at a time and record the number of generated mashups. The
results of this experiment can be viewed in Figure 3.

4 Related Work
There are multiple approaches for semi- and fully automated (web) service com-
positions in literature. [11,12] proposes an approach based on the RESTdesc

A-MaGe: Atomic Mashup Generator for the Web of Things 7

10

100

1000

10000

Max
Number of
Things: 2

No Mixed
Templates

Filtering
based on

type

Only Same
Context

Forbid TD
Annotation

Must
Include TD
Annotation

Forbid
Interaction
Annotation

Must
Included

Interaction
Annotation

Forbid
Interaction

Must
Include

Interaction

Agriculture Setting Industrial Scenario Smart Home

Possible mashups: Agriculture Possible mashups: Industrial Possible mashups: Smart Home

Fig. 3: We evaluate the filtering power of different filters and constraints in dif-
ferent scenarios. The results show that coarse forbidding using annotations is
more powerful than granularly forbidding specific interactions, but the opposite
is true for enforcing an annotation or interactions to be included.

ontology [13], that is able to describe REST APIs and the relationship between
them. Both approaches allow the user to define a set of goals to be achieved and
use a semantic reasoner that is able to parse and logically chain APIs based on
semantic reasoning to achieve this goal, but they differ in how they represent
the goals. [12] uses goals similar to LTL formulas used in our method, where a
specific API should be performed and the reasoner finds the chain of APIs that
can be connected together that lead to the desired API. On the other hand,
[11] allows the user to define the desired state that a mashup should achieve.
Therefore, [11] augments the RESTdesc with a semantic description of states
and state transition to allow for semantic reasoning about states. Compared to
both of these approaches, our method utilizes the TD ontology, which is not re-
stricted to any specific protocol or architecture, as long as the protocol bindings
are defined. Hence, our method is more universally applicable. Thus, to the best
of our knowledge, no other method was proposed that leverages the TD and
the AM abstraction for mashup design space exploration and automatic mashup
composition.

5 Conclusion

In this paper, we proposed A-MaGe, a method that takes a set of TDs, as
well as multiple filters and constraints as an input, and is able to automatically
generate an exhaustive list of all possible Atomic Mashups (AMs) that adhere
to the specified constraints. We started by formally defining the design space
of mashups in general and showed that by focusing on AMs, we decrease the
design space by several orders of magnitude. Subsequently, we introduced our
method that uses a set of pre-defined templates, as well as filters and constraints
that allow a human agent to further decrease the design space. We showed that

8 E. Korkan et al.

our method is capable of generating AMs in maximum a few seconds and that
filtering power of different filters and constraints work in different application
domains. Both evaluations show that our method a viable approach while being
universally applicable to all WoT devices.

References

1. Mercer, D.: Global Connected and IoT Device Forecast Up-
date (May 2019), https://www.strategyanalytics.com/access-services/
devices/connected-home/consumer-electronics/reports/report-detail/
global-connected-and-iot-device-forecast-update, accessed on 26.11.2020

2. Lueth, K.L.: IoT Platform Companies Landscape 2019/2020:
620 IoT Platforms globally. Website: https://iot-analytics.com/
iot-platform-companies-landscape-2020/ (December 2019), accessed on 27.11.2020

3. Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., Kajimoto,
K.: Web of Things (WoT) Architecture. Tech. rep. (April 2020), https://www.w3.
org/TR/2020/REC-wot-architecture-20200409/

4. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web of
Things (WoT) Thing Description. Tech. rep. (April 2020), https://www.w3.org/
TR/2020/REC-wot-thing-description-20200409/

5. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Champin, P.A.,
Lindström, N.: JSON-LD 1.1 (July 2020), https://www.w3.org/TR/2020/
REC-json-ld11-20200716/

6. Kast, A., Korkan, E., Käbisch, S., Steinhorst, S.: Web of Things System De-
scription for Representation of Mashups. In: 2020 COINS. pp. 1–8 (2020).
https://doi.org/10.1109/COINS49042.2020.9191677

7. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

8. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From Word Embeddings to
Document Distances. In: Volume 37. p. 957–966. ICML’15, JMLR.org (2015)

9. Kis, Z., Peintner, D., Aguzzi, C., Hund, J., Nimura, K.: Web of
Things (WoT) Scripting API (November 2020), https://www.w3.org/TR/2020/
NOTE-wot-scripting-api-20201124/

10. Schlott, V.E., Korkan, E., Kaebisch, S., Steinhorst, S.: W-ADE: Timing Perfor-
mance Benchmarking in Web of Things. In: Web Engineering. pp. 70–86. Springer
International Publishing, Cham (2020)

11. Mayer, S., Verborgh, R., Kovatsch, M., Mattern, F.: Smart Configuration of Smart
Environments. IEEE Transactions on Automation Science and Engineering 13(3),
1247–1255 (2016). https://doi.org/10.1109/TASE.2016.2533321

12. Ventura, D., Verborgh, R., Catania, V., Mannens, E.: Autonomous composition
and execution of REST APIs for smart sensors. In: CEUR Workshop Proceedings.
vol. 1488, pp. 1–12 (2015), http://ceur-ws.org/Vol-1488/paper-02.pdf

13. Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Mannens, E., Van de
Walle, R., Vallés, J.G.: RESTdesc—a Functionality-Centered Approach to Seman-
tic Service Description and Composition. In: Proceedings of the 9th ESWC, Crete,
Greece. pp. 27–31 (2012)

https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://iot-analytics.com/iot-platform-companies-landscape-2020/
https://iot-analytics.com/iot-platform-companies-landscape-2020/
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://doi.org/10.1109/COINS49042.2020.9191677
https://www.w3.org/TR/2020/NOTE-wot-scripting-api-20201124/
https://www.w3.org/TR/2020/NOTE-wot-scripting-api-20201124/
https://doi.org/10.1109/TASE.2016.2533321
http://ceur-ws.org/Vol-1488/paper-02.pdf

	A-MaGe: Atomic Mashup Generator for the Web of Things

