
Attack Data Generation Framework for Autonomous
Vehicle Sensors

Jan Lauinger, Andreas Finkenzeller, Henrik Lautebach, Mohammad Hamad, Sebastian Steinhorst
Department of Electrical and Computer Engineering

Technical University of Munich, Germany
Email: firstname.lastname@tum.de

Abstract—Driving scenarios of autonomous vehicles combine
many data sources with new networking requirements in highly
dynamic system setups. To keep security mechanisms applicable to
new application fields in the automotive domain, our work introduces
a security framework to generate, attack, and validate realistic
data sets at rest and in transit. Concerning realistic data sets,
our framework leverages autonomous driving simulators as well
as static data sets of vehicle sensors. A configurable networking
setup enables flexible data encapsulation to perform and validate
networking attacks on data in transit. We validate our results
with intrusion detection algorithms and simulation environments.
Generated data sets and configurations are reproducible, portable,
storable, and support iterative security testing of scenarios.

Index Terms—Security Framework, Data Generation, Intrusion
Detection, Autonomous Vehicles

I. INTRODUCTION

The emerging reality of self-driving cars relies heavily on data
provided by the massive number of integrated sensors within
these vehicles. Autonomous vehicles are built with many control
algorithms which process sensor data and induce appropriate
driving actions. Recently, many control algorithms have been
implemented based on machine learning techniques. This makes
the existence of data sets for training such algorithms a crucial
requirement. Similarly, realistic data sets containing nominal
sensor data and attack data are essential to develop and validate
security solutions which detect attacks against a system.

In recent years, many sensor data sets for autonomous driving
have been made public [1]. However, the number of data sets
containing attack data remains limited due to many restrictions
such as confidentiality rights, vulnerability disclosure, hardware
costs, etc. Furthermore, generating realistic attack data by exploit-
ing actual vulnerabilities of autonomous vehicles in an operational
environment is a very challenging process, not only due to techni-
cal difficulties. Regulatory and legal requirements (e.g. authoriza-
tion of public transportation authorities, car manufacturers, etc)
hinder vehicle attacks even further [2]. Additionally, validation of
generated attack data requires specific detection algorithms which
are typically part of Intrusion Detection Systems (IDSs). Hence,
falling back on realistic sensor and attack data generation is a
necessity and objective of this work.

Contribution: To solve the issue of missing sensor and
sensor-specific attack data, we introduce an attack data generation
framework with the additional capability of validating realistic
sensor-specific attack data (see Fig. 1). The modular architecture
of the framework has three major domains, namely (i) the data
source domain which reads in realistic data from real autonomous
vehicle data sets (e.g. Argoverse [3]) as well as synthetic data,
generated by a simulation environment (e.g. CARLA [4]), (ii) the
attack generation domain to configure different types of attacks on
networking and application layers, and (iii) the attack validation
domain which measures the impact of attacks. To summarize, we:

Data
Set

Attack Data ValidationData Source

Attack Generator

Exploit Realization

Pr
op

er
tie

s
At

ta
ck

s

Injection Modification Removal

Frequency Duration ...

Attack Configuration

Data
Set
+

Attack
Data

Si
m

ul
at

or

ID
S

Validator OutcomeSensors Host

Si
m

ul
at

or

Sm
ar

t V
eh

ic
le

Fig. 1: High-level overview of the attack data generation framework. The
workflow is based on configurations of data sources and attacks. Out-
going attack data sets are vaildated by IDS algorithms and a simulation
environment.

• Design and develop a scalable attack generation framework1

for autonomous vehicles.
• Introduce a scenario-based configuration setup providing

reproducibility and portability of security tests.
• Present and validate multiple attack types to demonstrate the

flexibility of the framework.

II. SYSTEM MODEL

We describe our system logic shown in Fig. 1 on a higher
level to abstract the scope of parameters into categories which
allow mappings between data sources, attacks, and validation
techniques.

A. Data Source

In order to make our framework compatible with a large
number of different sensors, we categorize the sensors based on
their data output. Most of the available sensors simply produce
a scalar value such as a temperature or a pressure value. More
sophisticated sensors, such as cameras, require a vector or even
more complex data structures like matrices or custom data types
to describe the captured data. With this classification, it is easy
to add new sensors to our framework by simply putting them
into one of the existing categories. Concerning network data, we
consider OSI layers of link, network, transport, and application.

1https://github.com/tum-esi/attack generation framework

Sc
en

ar
io

 M
an

ag
em

en
t

(C
re

at
e,

 D
el

et
e,

 Im
po

rt,
 E

xp
or

t)

Data Source Configuration

Attack Configuration

Attack Validation

Simulation & Real-time Monitoring

 Attack Type
 - Injection (e.g., add offset)
 - Modification (e.g., image blurring)
 - Removal (e.g., DoS)

 Validation Type
 - Simulation (e.g., visualize error)
 - Algorithms (e.g., tune parameters)

 Scenario Type
 - Static Data (e.g., existing data set)
 - Simulation Engine (e.g., path, sensor)
 - Network Data (e.g., packets)

Attack Data Set Management
- Labeling
- Import/Export
- Train Validation Parameters

 U
ser Interfaces:

C
onfiguration

Sim
ulation

Post-Processing

Fig. 2: Framework flowchart with stages of scenario definition and con-
figuration, simulation and monitoring, and attack data set management.

B. Attack Generator

For the attacks, we use a similar approach where we group
the attacks based on their actual effect on the data value and map
these attacks to every sensor based on the known vulnerabilities of
that sensor. Currently, our framework supports three main attack
categories: injection, modification, and removal. To implement
every attack, different parameters need to be configured and
scheduled. These parameters include attack frequency, attack
duration, value ranges, etc. It is important to note that the actual
implementation of attacks can vary drastically and depends on
vulnerabilities and resources of the system, thus, our work does
not explore the space of possible attacks but considers techniques
to produce verifiable attack data.

C. Attack Data Validation

The framework supports multiple validation approaches to
validate the generated attack data. These approaches include
feeding the generated data set, which includes attack data, to
a simulation environment to demonstrate the attack’s impact
visually. Another strategy is to use the generated data set as an
input for statistical models, which, in turn, allow attack validation.
To support validation techniques, our framework allows automatic
as well as manual labeling of generated attack data sets.

III. ATTACK GENERATION FRAMEWORK

To connect the domains of the system model from Sec. II, we
define a scenario management approach which allows generation
of attack data sets with reproducible configurations. The following
subsections describe the workflow to generate these data sets.

A. Workflow

The high-level workflow of the attack data generation frame-
work, as illustrated in Fig. 2, can be separated into three
workflow phases with (i) the configuration phase to incorporate
configuration settings of the data source, attack, and validation

domain into individual scenarios, with (ii) the simulation phase
for running and monitoring the scenario which has been set
up, and with (iii) the post-processing phase for post-processing
actions on generated data sets. We divide scenarios into different
types and elaborate on scenario structures in Sec. III-B. During
scenario execution in the simulation phase, users directly see the
effects of the configurations and may return to the configuration
phase if output data is not reflecting desired goals. The post-
processing phase focuses on the final result of the generation,
allowing adjustments or addition of labels. If possible, analytical
techniques can be applied for validation. From the prototype
perspective, all three phases are supported with individual User
Interface (UI) pages.

B. Scenario Management

Scenario objects bind configuration logic about data sources,
attacks, and validation techniques. It is not possible to generalize
all configuration parameters and apply the same attack to different
data sources, which is why we abstract scenarios into different
types. The definition of scenario types is mainly driven by
the data structure of our different data sources. The following
itemization outlines differences among data sources and maps
possible attacks. In addition, we name software modules which
produce configured features but provide a detailed description of
these software modules in Sec. III-C.

• The scenario type driving simulation makes use of the
simulator bridge software module to configure autonomous
driving scenarios. At the same time, sensors can be config-
ured, added to the vehicle, and attacked to produce realistic
attack sensor data.

• If the scenario is of type networking, users can create
and scale virtual networking setups based on pre-defined
networking resources via the virtual networking module. It is
possible to define containers to attack existing resources of
the configured virtual networking setup. Traffic between net-
working peers encapsulates either freshly generated sensor
data or data from real-world data sets.

• The type static data lets users select existing data sets
and apply modification attacks on a percentage of data
items. The validation phase of this scenario type allows the
creation of analysis models which store trained settings of
parameter tuning. As an example, image frames generated
by the driving simulation scenario type can be validated with
statistical analysis models.

C. Prototype Software Modules

From the software development perspective, we created four
main software modules to build the framework logic. The next
enumeration elaborates on the individual modules.

1) Controller: This module is the core part of the framework
and the first point of interaction from a user perspective.
Acting as a web server, the controller exposes a UI which
lets users navigate between workflow phases. Additionally,
the controller module has compatibility with interfaces of
other software modules (simulator bridge, database, and
virtual networking) to expose features of other modules via
the UI. Hence, the controller has the ability to support
each workflow phase with features coming from other main
software modules.

2) Simulator Bridge: The purpose of the simulator bridge is
to provide connectivity towards existing autonomous driving
simulators. Until now, our framework is compatible with

10.90.80.70.6

·10−3

0.9

1.1

1.3

1.5
·10−3

Latitude

L
on

gi
tu

de
Ground Truth
GNSS Offset

(a) Use case 1: GNSS offset attack.

0 1 2 3 4 5
0

128

200

Detection Interval

N
um

be
r

of
Pa

ck
et

s
pe

r
Ti

m
e

Fr
am

e

Packets Received

(b) Use case 2: DoS attack.

1 22 44 66

−1

0

1

Number of Frames After Buffer Filled

M
et

ri
c

D
is

ta
nc

es

Chromaticity
L1R

Gradient
Detection

Ground Truth

(c) Use case 3: Image tampering detection.

Fig. 3: Validation of the generated attack data based on three use cases: (a) shows constant offset GNSS attack (0.5m longitude, 2m latitude) with
period 1s. (b) shows network traffic monitoring and attack detection with pre-determined static threshold of 128. (c) shows real-time short/long-term
memory LDA detection.

CARLA and support for the SVL Simulator [5] is planned.
By defining a driving scenario on the configuration page
of our framework, driving simulator compatibility provides
realistic generation of sensor data including types such as
GNSS, camera, IMU, LIDAR, radar, etc. Additionally, the
simulator bridge supports to pass attack configurations to
respective simulation environments.

3) Virtual Networking: The virtual networking modules sup-
ports dynamic configurations of virtual networking environ-
ments. Currently, we leverage Docker to manage virtual
networks which support three types of containers for net-
work traffic generation. Data generation containers have the
ability to periodically send arbitrary data to a destination
container. Attack generation containers have the same con-
figuration parameters as data generation containers but can
be configured and replicated differently. Receiver containers
act as destinations and support configurable network traffic
collection. This allows collection of network traffic from all
layers.

4) Database: The database module stores scenarios and con-
figurations as objects for reloading and replay purposes.
Concerning data set storage, currently supported formats are
.cap and .csv.

IV. USE CASES & EVALUATION

Since data set generation depends on experimental setups
[1], we describe attack data generation with use cases. Due to
system requirements introduced by the CARLA Docker image,
we evaluate our use cases on a computer with an Intel i7-8700K
CPU, a Nvidia GTX 1080-Ti graphics card, 32 GB of RAM, and
256 GB SSD storage.

A. Autonomous Driving Sensor Attack and Offset Detection
Description: To attack sensors, our framework allows con-

figurations that inject, modify, or remove specific data items
which reflect value ranges of sensors under attack. Timestamps
augment data items and replace removed data samples for labeling
purposes. In order to detect attacks, simulation scenarios are
executed twice using comparable ground truth paths.

Evaluation: To evaluate an exemplary sensor attack, Fig. 3a
shows how a constant GNSS offset modification affects the loca-
tion of the vehicle. The figure shows consecutive longitude and
latitude values in periodic intervals. Longitude and latitude value
pairs refer to a fix point location in the simulation environment
and do not relate to real-world locations. The outcome of the sen-
sor attack causes the vehicle to leave its scheduled path. Thereby,

alternating GNSS offset values show the location deviation inside
the simulator environment. As a direct consequence, sensor values
attached to the simulated vehicle are affected as well (e.g. camera
direction changes).

B. Network Traffic Denial of Service (DoS) Attempt and Detection
Description: As already outlined and to model networking

traffic and access all networking layers of packets, our frame-
work supports container-driven virtual networking configurations,
where further communication protocols will be added in the
future. Taking the networking scenario type, one sample use
case is to produce a camera image stream between a sending
and receiving container. We configure an attacking container to
perform a DoS attack targeting the receiver node. From the
receiver side, we use Wireshark as the network analyser tool
to access network traffic of the scenario. Fig. 3b shows the
data collection of the receiver. Here, the increasing number of
detection intervals measures the number of received packets.

Evaluation: To detect and validate networking attacks, our
framework supports a ring-buffer memory capturing of packets
and compares traffic distributions between different time frames.
The attack is scheduled to occur at round 4. As visualized in
Fig. 3b, the number of packets increases to 197 packets. Our
ring-buffer traffic analysis at the receiver side triggers a detection
after 0.238 ms, when using a pre-defined threshold value of 128
packets.

C. Image Tampering and Real-time Threshold Detection
Description: To showcase an attack on static real-world data

sets, we perform two types of image tampering attacks, namely
image blacking and blurring. To apply these attacks, users are
required to configure a percentage of an image array that should
be modified. To validate image tampering and expecting an
constant input stream of images, we reproduced the real-time
image tampering detection algorithm from [6]. This algorithm
depends on a Linear Discriminant Analysis (LDA) for threshold
determination. Autonomous vehicles typically scan environments
before their deployment [7]. This allows data-driven parameter
tuning of the image tampering detection threshold which, when
set up, predicts new incoming images automatically.

Evaluation: To evaluate a blurring attack on a static data set,
we considered the training data set 1 of [3], specifically, the data
of the centered front camera. After generating two new data sets
using the image blacking and image blurring attacks, training
of the short LDA-based threshold provided training parameters
as shown in row 1 of Tab. I. Using the trained LDA threshold

Tab. I: Image tampering LDA parameters; Accuracy, True Positives (TP),
False Positives (FP), True Negatives (TN), and False Negatives (FN)

Attack Test Phase Accuracy TP FP TN FN

Blurred Training 95.45 % 18 0 1 3
Blurred Prediction 95.45 % 51 0 3 12
Blacked Prediction 92.42 % 51 0 5 10

model, Fig. 3c shows real-time image tampering detection after
injecting 2 malicious images into the blurred image attack data
set. Accuracy results of LDA parameters can be found in row
2 of Tab. I. Detection accuracy decreased slightly to 92.42%
in the case of blacked images, as indicated by row 3. Besides
the model parameters, Fig. 3c shows the short-term long-term
buffer algorithm which compares different image metrics. Here,
chromaticity histogram comparison performs a color analysis, the
L1R score compares brightness, and gradients compare edges in
images. Further information about these metrics can be found in
the work [6]. Every line of the chart represents the differences
between short-term and long-term buffer values of the described
metrics. An attacked image causes the difference to increase
above the threshold which allows detection. Every new image that
is passed to the algorithm counts as a new frame for comparison,
allowing real-time detection of image tampering. The ground
truth value is a reference to the detection line which indicates a
successful detection after the occurrence of two malicious frames.

V. RELATED WORK

The main related work, presented in [8], introduces an Attack
Traffic Generation (ATG) toolkit for security testing of the Con-
troller Area Network (CAN) bus message protocol. In their work,
Huang et al. analyze the CAN bus attack model and identify injec-
tion and modification attacks with configurable timing behavior as
main attack scenarios. With capturing, attack configuration, traffic
generation, labeling, and formatting stages, the ATG toolkit is
able to generate predefined attacks automatically. From the high-
level architecture perspective, the ATG framework is similar to
our architecture. Similarities are the separation of communication
interfaces towards data sources, the Graphical User Interface
(GUI), and the file processing module. The ATG task processing
unit and bus accessing layer provide similar features as our
attack engine and controller loop. Concerning differences, we
use an extra sensor manager module to maintain sensor state
and configurations, thus relaying connections between the attack
engine and the controller unit. Further, our framework focuses
on a wide range of Internet of Vehicles (IoV) sensor attacks
with less focus on communication protocols. Another point is the
abstraction towards data sources which enables our framework to
process data sets, simulator data, or virtual networking traffic.

The work in [9] lists seven data sets with attack data that
have been collected between 2017 and 2020. However, these
data sets contain mainly CAN-related attacks. Some data sets
contain attack data related to one type of sensors, such as the one
published in [10] which contains camera attacks data, whereas
other existing data sets either do not provide domain-specific
artifacts, or do not contain automotive-related data and attacks
[11]. In contrast, our framework is able to generate automotive-
related data sets that contain attack data related to different set
of sensors (e.g. GNSS, Camera, etc.).

VI. CONCLUSION

This work introduces a framework to generate attack data sets
to support intrusion detection algorithms and security testing
of autonomous vehicles. By configuring application scenarios,
attacks, and validation techniques, our framework is able to
generate and validate numerous attacks on sensor data, static real-
world data, and networking data.

ACKNOWLEDGMENT

This work has received funding by the European Unions
Horizon 2020 Research and Innovation Programme through the
nIoVe project (https://www.niove.eu/) under grant agreement no.
833742. This work has received funding from The Bavarian State
Ministry for the Economy, Media, Energy and Technology, within
the R&D program Information and Communication Technology,
managed by VDI/VDE Innovation + Technik GmbH

REFERENCES

[1] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong,
Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom,
“nuscenes: A multimodal dataset for autonomous driving,”
in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 11 621–11 631.

[2] H. Winner, “Introducing autonomous driving: An overview
of safety challenges and market introduction strategies,” at-
Automatisierungstechnik, vol. 66, no. 2, pp. 100–106, 2018.

[3] M.-F. Chang, J. W. Lambert, P. Sangkloy, J. Singh, S. Bak,
A. Hartnett, D. Wang, P. Carr, S. Lucey, D. Ramanan,
and J. Hays, “Argoverse: 3d tracking and forecasting with
rich maps,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun, “CARLA: An open urban driving simulator,”
in Proceedings of the 1st Annual Conference on Robot
Learning, 2017, pp. 1–16.

[5] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke,
M. Možeiko, E. Boise, G. Uhm, M. Gerow, S. Mehta et al.,
“Lgsvl simulator: A high fidelity simulator for autonomous
driving,” arXiv preprint arXiv:2005.03778, 2020.

[6] E. Ribnick, S. Atev, O. Masoud, N. Papanikolopoulos, and
R. Voyles, “Real-time detection of camera tampering,” in
2006 IEEE International Conference on Video and Signal
Based Surveillance. IEEE, 2006, pp. 10–10.

[7] X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, “Au-
tonomous parking using optimization-based collision avoid-
ance,” in 2018 IEEE Conference on Decision and Control
(CDC). IEEE, 2018, pp. 4327–4332.

[8] T. Huang, J. Zhou, and A. Bytes, “Atg: An attack traffic
generation tool for security testing of in-vehicle can bus,”
in Proceedings of the 13th International Conference on
Availability, Reliability and Security, 2018, pp. 1–6.

[9] M. E. Verma, M. D. Iannacone, R. A. Bridges, S. C.
Hollifield, B. Kay, and F. L. Combs, “Road: The real ornl
automotive dynamometer controller area network intrusion
detection dataset (with a comprehensive can ids dataset
survey & guide),” arXiv preprint arXiv:2012.14600, 2020.

[10] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai,
“Kitsune: an ensemble of autoencoders for online network
intrusion detection,” arXiv preprint arXiv:1802.09089, 2018.

[11] Q. He, X. Meng, R. Qu, and R. Xi, “Machine learning-
based detection for cyber security attacks on connected and
autonomous vehicles,” Mathematics, vol. 8, no. 8, 2020.

