
How Real (Time) Are Virtual PLCs?
Diogenes Javier Perez

Technical University of Munich
Munich, Germany

diogenesjavier.perez@tum.de

Josef Waltl
Software Defined Automation GmbH

Garching, Germany
josef.waltl@softwaredefinedautomation.io

Laurin Prenzel, Sebastian Steinhorst
Technical University of Munich

Munich, Germany
{laurin.prenzel, sebastian.steinhorst}@tum.de

Abstract—Production systems continuously need to become
more cost-efficient and flexible. Hardware-based programmable
logic controllers, while widely used in the industry, do not offer
the level of flexibility and scalability required for future applica-
tions. Each hardware-based PLC entails costs for maintenance
and they cannot keep up with resource-intensive loads, such as
artificial intelligence. The virtualization of PLCs promises to solve
these issues. A Virtual PLC at the local edge level between cloud
and industrial assets provides the flexibility and resource capacity
needed for modern control applications. In this paper, the concept
of virtual PLCs in a COTS server is outlined as a SoftPLC that
is running within a virtual machine managed by a hypervisor.
In addition, the virtual PLC is implemented and evaluated to
determine whether virtual PLCs can satisfy the requirements for
specific domains of industrial automation. We compare multiple
virtual PLC configurations to a SoftPLC without a hypervisor.
Our results indicate that the virtual PLC implementation is on
par in terms of switching and response time for applications
requiring response times below 10 ms and deterministic behavior
is achievable. While further work is necessary, virtual PLCs may
offer tremendous advantages for future industrial systems.

Index Terms—Software Defined Automation, vPLC, Real-time
Control, Server Virtualization, Edge Computing

I. INTRODUCTION

Modernizing the factory automation stack requires more than
an update of the actual hardware implementations, i.e., the
introduction of new control paradigms for a software-defined
automation [1], [2]. The design and realization of flexible and
changeable manufacturing systems for individualized products
are specified as crucial for competitive production systems
of the future [3]–[5]. In such systems, reconfiguration or
redeployment of industrial automation systems can be done for
every piece, the application of machine learning and artificial
intelligence (AI) algorithms is essential and full-loop feedback
systems enable self-optimizing production systems.

Current programmable logic controllers (PLCs), along with
the way the industry is structured, can only support future
industrial requirements in a constrained way [6], [7]. Scaling
the hardware is costly and often not possible. They do not
support resource-demanding tasks, such as machine learning
and artificial intelligence. Furthermore, hardware-based PLCs
imply individual maintenance and hardware costs, as every
single technical process regularly includes an individual PLC
for each subsystem [7]. Modern control systems should meet
requirements for operational technologies and information
technologies. Therefore, PLCs require an intense transformation.
To achieve this, an Internet-of-things-PLC was prototyped and

Virtual PLC

PLC Twin

vPLC management

Cloud

Edge

Field

Virtual PLC

Fieldbus I/O

COTS Server

Fieldbus I/O

Data
Collection

Machine
Learning

PLC Ops

Fig. 1. In a software-defined automation virtual PLCs can be used to control
industrial assets in the same way as conventional PLCs are. A COTS server
located on the edge can host multiple virtual PLCs to control assets in real-time.
Virtual PLCs can be managed and monitored from a cloud instance.

evaluated in [8]. After a positive outcome, an extension of
software and hardware design for industrial evaluation was
suggested as future work.

In this paper, we implement an architecture using virtual
PLCs (vPLCs) on top of a real-time hypervisor on a commercial
off-the-shelf (COTS) server with real-time industrial fieldbuses.
Servers and computers can offer enough resources to fulfill
the functions of PLCs, Human-Machine Interfaces (HMIs)
and programming terminals together [9]. An edge server
hosting virtual PLCs that communicate with the shop floor
and cloud facilitates scalability and reduces the amount of
hardware, vendor dependencies and maintenance costs (see
Fig. 1). Coupling the cloud and shop floor further allows
the implementation of software-based PLC Operations (Ops),
as well as data collection and use of advanced machine
learning algorithms, while still satisfying deterministic real-time
requirements.

In this paper, we evaluate the performance of a virtual
PLC implementation in a server for the edge, as proposed in
[10]. The goal of this work is to determine if virtual PLCs
have already reached the point where they can satisfy the
requirements of industrial automation domains. We compare
multiple vPLC configurations using a bare-metal hypervisor
to a traditional SoftPLC without a hypervisor to establish
differences in the real-time behavior. In multiple measurements
using native monitoring tools, as well as in measurements
on input/output (I/O) modules, we demonstrate that with
existing solutions, industrial-grade performance and reliability
are feasible.

The rest of the paper is structured as follows. Section II



summarizes the current state of the art of virtual PLCs.
Section III introduces the architecture used to tackle the
problem. Then, Section IV describes the method of evaluation
and the results of our measurements, which are discussed in
Section V. We conclude in Section VI.

II. BACKGROUND

This section presents solutions that are based on three
approaches as alternatives for implementing the control layer
in a more up-to-date way. First, cloud-based solutions are
portrayed, followed by solutions based on two different
approaches from the edge, i.e., industrial control from the
edge and virtualized PLCs on real-time hypervisors on the
field. The solution approaches are portrayed in a sequence
where the succeeding approach considers challenges faced by
the previous approach. The solution proposed in this paper
considers the challenges experienced in the three approaches.
Finally, previous work on real-time hypervisors is presented as
it is a fundamental component for this work and the previously
done ones mentioned in this section.

The terms SoftPLC, i.e., a software application that emulates
a standard PLC in a computer or server and virtual PLC, i.e.,
a SoftPLC that is running within a virtual machine (VM)
managed by a hypervisor, are used throughout this paper,
respectively, as SoftPLC and virtual PLC (vPLC).

A. PLCs in the cloud

Cloud computing offers scalability, efficiency and cost
reduction that can improve the actual control hardware
implementations. A question that arises is to what extent
implementations from the cloud could be used in automation
systems. Two works based on cloud computing are presented
in this subsection.

A vPLC based on cloud computing was analyzed in [11]
to assess its performance. The PLCs were implemented in
Microsoft Windows 7 32-Bit virtual machines within a VMware
vCloud suite private cloud architecture and their performance
was compared with a Phoenix Contact Hardware PLC (ILC
350 PN) located in the same Profinet RT network.

To evaluate its performance, an IEC 61131-3 project was
used. The project read an externally generated signal and wrote
the inverted value to the output connected to an oscilloscope.
The cloud-based vPLC showed lower performance than the
hardware PLC but it was still acceptable for soft real-time
applications. Their implementation did not use a real-time
hypervisor.

In [12] a cloud-based SoftPLC was implemented in a cloud
environment for building automation, to analyze its round-trip
times. Their SoftPLC achieved round-trip times below 1000 ms
in 99.72% of the cases, while still reducing the implementation
costs compared to a traditional hardware PLC implementation.
One downside of this implementation is its vulnerability to
internet connection failures.

After analyzing the works presented in this subsection, it
can be inferred that by locating the control unit on the edge, as
proposed in this paper and in [13], crucial real-time tasks could

be fulfilled faster and also during a loss of internet connection.
It can be further inferred that using a real-time hypervisor, as
proposed in [10] and in this work, could help improve the
performance of the vPLC.

B. Industrial control from the edge

As the edge is located physically near to the asset to be
controlled, reacting to events in real-time becomes possible,
while still offering flexibility and more resource capacity than
classical industrial controls. In addition, systems on the edge
are less susceptible to internet network failures than cloud
implementations are. Two works proposing industrial control
from the edge are portrayed in this subsection.

In [13] a concept for linking control and cloud technologies
was presented and implemented using the edge as a mediator
between field-level and the cloud. This opens possibilities for
cloud-assisted control for resource-intensive data processing
and feedback control loops from the shop floor.

In their implementation, User Datagram Protocol (UDP) and
serial communication were used for real-time communication
between the edge device and the IIoT devices controlling the
robots. MQTT was used for non-real-time communication
between the edge device, the cloud and the IIoT devices
controlling the robots.

Edge computing technologies were used to execute IEC-
61131-3 applications in a vPLC from the edge in [14]. Their
implementation demonstrated that deterministic IP networking
can be used for field-level communications, e.g., Profinet RT
over DetNet. In their architecture, the virtual PLC was hosted
in an Ubuntu virtual machine and connected over a virtual
switch in the hypervisor environment to a deterministic IP
network.

In a word, the edge device used in [13] could be swapped by
the server with a real-time hypervisor portrayed in this paper
and in [14], to host virtualized PLCs and other applications.
This would offer more standardized programming options,
e.g., IEC 61131-3. In addition, real-time communication could
implement several industrial communication protocols and
flexibly switch between them. In this work, the virtual PLC
will be hosted as in [14] but the virtual switch will be instead
directly connected to the real-time fieldbus.

C. Virtualized PLCs on a real-time hypervisor on the field

The works presented in this subsection propose using a
real-time hypervisor to manage the resources of the virtual
machines that host the vPLCs.

The concept and architecture of a virtual PLC are presented
in [10]. In their architecture, the dedicated PLC I/O bus
was replaced with a SDN-based networking infrastructure
where both virtualized PLCs, running within a VM on a real-
time hypervisor, and non-real-time workloads (HMI, SCADA
Master Stations (MS) and Historian Database servers (HDB)),
running within a VM on a COTS hypervisor, interacted. In
[15] an evaluation was conducted to determine to which extent
partitioning techniques can improve real-time hypervisor envi-
ronments using Cyclic Test [16]. Experiments were performed



with varying kernel configurations and amount of processors
assigned to a single VM. Evaluation results showed that the
virtual PLC is achievable from the systems virtualization
perspective.

Considering all of these, in this paper, a virtual PLC
implementation is put under test, not only from a hypervi-
sor performance perspective but also including the software
performance of the vPLC and the hardware I/O performance.

D. Real-time hypervisors

Virtualization entails benefits such as improved resource
utilization, cost reduction and simpler hardware management.
However, its overhead due to additional layers can increase
latency if not managed properly. Two works presented in this
subsection evaluate the real-time performance of two broadly
used hypervisors, Xen and VMware vSphere.

The performance of virtual environments has been analyzed
and aimed to be improved in [17] and [18]. However, I/O
virtualization can face challenges in latency-sensitive domains.
The solution to these issues relies on the scheduler of the
hypervisor. In [19], RT-Xen, a real-time hypervisor scheduling
framework for the hypervisor Xen, was implemented and
evaluated. The obtained results in their evaluation suggest
that, when using this framework, Xen can provide effective
real-time scheduling to guest Linux operating systems. In
[20], enhancements to be applied on the Xen scheduler, e.g.,
management of caches and scheduling latencies, were presented
and their experiments indicate that with their modifications Xen
can host soft real-time guests without affecting non-real-time
applications. In their experiments, they were able to obtain
good quality audio running an IP telephony workload.

VMware vSphere aims to maintain this overhead as small as
possible to fulfill latencies within milliseconds for applications
such as voice over Internet Protocol (VoIP) streaming, where
packets need to arrive in intervals of 20 ms [21]. Latency
sensitivity improves response time, jitter and determinism by
reducing sources of extra overhead and latency introduced
by virtualization [22]. Techniques such as tuning of the
virtualization layers, bypassing virtualization layers and giving
private access to hardware resources help to decrease the latency
of virtualization. An evaluation performed in [21] showed that
latency sensitivity combined with other features attained an
almost native performance on response time and jitter in a
server with a hypervisor. For instance, the median of a ping
was 20 µs, which is only 2 µs more than a native setup.

Based on the findings of the works considered in this
subsection, it can be inferred that hypervisors can be already
suitable for hosting real-time workloads, e.g., a vPLC, as
proposed in this work and in [10].

III. METHODOLOGY

The virtual PLC architecture we propose consists of several
interacting hardware and software layers. In this section, the
architecture used for a generic virtual PLC implementation in
a COTS server is portrayed, without referring any to specific
hardware.

A. Architecture

I/O Module

Bare Metal Hypervisor

Real-time Operating System 

vPLC

(CPU, Drive, RAM)
Host Server Hardware

Processes
Non-time-critical

Virtual Machine Image

Real-time Fieldbus

IT Server

Fig. 2. Architecture of the virtual PLC in a server hosting one virtual PLC

Figure 2 shows the fundamental architecture followed for
the implementation of the virtual PLC. As proposed in [10],
the virtual PLC is running besides other processes within
an independent virtual machine with an operating system
optimized for real-time workloads.

To connect the input and output module to the server, an
Ethernet interface is required on the server and the module
should be able to connect to this Ethernet interface, either
directly with a normal Ethernet cable or using a converter. As
the purpose of using this architecture is to evaluate the input
and output performance of the vPLC, the I/O module should
have input and output terminals and their dynamic behavior,
i.e., rising and falling times should be considered.

The following layer is the host server hardware, on which
the vPLCs run and communicate with devices on the field.
The host server hardware must have processing, storing and
Ethernet connectivity capabilities. Unlike in [10] and [14], the
I/O module was directly connected to the network interface
card operating with a real-time fieldbus protocol instead of
connecting the devices over a network. The aim of connecting
the devices directly to the network interface card is to assess
the performance of the vPLC without being affected by external
factors arising from the network infrastructure.

This layer is followed by the bare metal hypervisor. The
hypervisor manages the virtual machines hosting the vPLCs
and the available resources from the host server hardware. A
hypervisor is used to individually assign CPU cores, RAM
and disk space to the virtual machines hosting the vPLCs. The
hypervisor should be configured for hosting real-time workloads
to assure determinism and low latencies on virtual machines.
It is recommended to leave one of the CPU cores free, i.e.,
not assigned to any virtual machine, for the hypervisor.

The next layer is the real-time operating system contained
inside the virtual machine. The operating system will host
the applications running within the virtual machine, i.e., PLC
runtime and other processes. To achieve determinism and low
latencies, the operating system must be optimized for real-time
workloads as well. As the PLC runtime is the most relevant
process running within the operating system, the operating
system should be chosen based on the compatibility of the
PLC runtime. The operating system will also initialize the



VMware ESXi 7.0 U2

 (6-Cores i7-10710U, 32 GB RAM)
Intel NUC 10

Slave
EtherCAT

 VM Image 2

Device
PROFINET

 VM Image 1
CODESYS

Control

Linux

CODESYS
Control

Debian 11
Linux

Debian 11

Linux
Debian

11

VM
Image 3

IT Server

PROFINET-RT EtherCAT

Fig. 3. Specific software and hardware components used to implement the
third configuration under test (2vPLC-B) of the virtual PLC.

Ethernet interfaces whenever the system is started to allow the
vPLC to be reached from the network and reach other devices
over the fieldbus network. The virtual machine should be given
access to a network interface card (NIC) either through a virtual
switch or directly connecting the virtual machine to the NIC.

The uppermost layer is composed of the virtual PLC or
PLC runtime and other non-real-time tasks. The PLC runtime
is responsible for running a process that simulates a PLC in
a computer-based environment, runs a cyclic program and
communicates with the inputs and outputs through a fieldbus
protocol. A commercial PLC runtime is recommended as they
offer better support of I/O interfaces and fieldbuses. Non-time-
critical processes comprehend tasks, such as human-machine
interfaces, system interrupts or retrieving and sending status
of the vPLC.

IV. EVALUATION

The aim of evaluating the implementation of the virtual PLC
is to establish how deterministic the implementation is, how
well it performs in comparison to a conventional SoftPLC and
to determine if the performance fluctuates when additional
processing load is introduced into the server where the vPLCs
are running. The tests were performed on the (soft-) PLC that
communicates over EtherCAT.

A. Implementation

The architecture outlined in Section III was implemented
using the technologies presented in Figure 3. This implementa-
tion hosts up to two virtual PLCs in the server. Each of them
communicates independently with the sensors and actuators
through its fieldbus.
Host Server A Intel NUC with a 6-Core Intel Core i7 and

32 GB RAM was used for the implementation. Hyper-
threading was deactivated in the basic input/output system
(BIOS) of the server to increase determinism.

Hypervisor The bare-metal hypervisor VMware vSphere ESXi
7.0 U2 was directly installed on the solid-state drive.
Within the hypervisor environment, the virtual machines
were connected to the physical network interface cards
over a dedicated virtual switch (vSwitch). In the hypervisor
configuration, latency sensitivity was set to high. The CPU
cores and RAM that were assigned to each of the VMs
were reserved.

Virtual machines Along the implementation, up to three
virtual machines were hosted within the server: Two
containing vPLCs and one used to generate extra load for
testing purposes (see Fig. 3). Each of the VMs hosting a
vPLC was assigned with two CPU cores. One core was
isolated for running the PLC runtime and the other core
deals with other tasks and interrupts. The third virtual
machine was assigned one CPU core and the remaining
CPU core was left for the hypervisor.

Guest OS and workloads Linux Debian 11 was used along
with the PREEMPT RT patch. The performance of
the traditional Linux kernel is not enough for real-
time applications due to its lack of determinism. The
PREEMPT RT patch reduces the part of the kernel code
that is non-preemptible to increase its predictability and
reduce latencies characterizing the system [23]. This is
achieved by modifying the symmetrical multiprocessing
(SMP) capabilities of the Linux kernel without rewriting
it completely, turning Linux into an operating system that
meets soft real-time requirements.
Additional tuning was done on the operating system using
the Daemon ”Tuned” with the real-time profile. For the
VM images one and two, the CODESYS Control for
Linux SL version 4.2.0.0 was the runtime used on top of
the operating system. For VM image three, a command
was run to stress the CPU assigned to this virtual machine
up to 100%.

Fieldbus Two I/O modules were connected to the Intel
NUC over Ethernet interfaces. For this implementation
EtherCAT and PROFINET I/O modules were used. The
EtherCAT slave (Beckhoff EK1100 with EL1809 and
EL2809) was connected through the Ethernet port of the
server. The Profinet device (ifm AL1100) was connected
over a USB/Ethernet adapter (Tp-Link UE300).

B. Configuration under Test

Four configurations were evaluated. Table I summarizes
the properties of each configuration. In configurations 1vPLC,
2vPLC and 2vPLC+L, vPLCs were installed on the server. The
aim of implementing these three configurations is to determine
whether adding more processing workload to the server where
the vPLCs were hosted affects the performance of the vPLC. In
configuration 2vPLC+L, additionally, a VM to load the server
was created. Configuration SoftPLC resembles a traditional
SoftPLC implementation, where the operating system was
installed directly on the SSD without a hypervisor. In this
configuration, the operating system was tuned as well, as
described in the implementation subsection and only two of the
physical CPU cores were activated in the BIOS. The goal of
implementing this configuration is to find out whether the vPLC
can perform as well as a traditional SoftPLC implementation
would or not.

C. Tests

All four configurations were evaluated using three tests to
compare the implemented configurations from a software and



TABLE I
PARAMETERS OF THE CONFIGURATIONS UNDER TEST FOR THE

EVALUATION OF THE VIRTUAL PLC IN A SERVER.

Configu-
ration

PLCs in
Server

Overload
VM

Hyper-
visor

Fieldbus Active
CPU
cores

1vPLC 1 0 Yes EtherCAT 3
2vPLC 2 0 Yes EtherCAT/

PROFINET
5

2vPLC+L 2 1 Yes EtherCAT/
PROFINET

6

SoftPLC 1 0 No EtherCAT 2

hardware perspective. Cyclic Test was performed to evaluate
the performance of the hypervisor and operating system,
without considering the performance of the SoftPLC or vPLC.
The CODESYS Monitoring test was carried out to assess
the performance of the SoftPLC or vPLC from a software
perspective. The input/output tests were performed to evaluate
the performance of the SoftPLC or vPLC from a software
and hardware perspective, having a full loop that encompasses
processing software and physical hardware inputs/outputs.

1) Cyclic Test: The aim of this test is to assess the
performance of the tuned operating system by measuring its
latency. This is achieved by measuring the difference between
the time a thread should wake up and the time at which it does
in reality [16]. The Cyclic Test was run for 12 hours. For the
configurations 1vPLC, 2vPLC and 2vPLC+L the test was run
in the VM hosting the SoftPLC communicating over EtherCAT.
For the configuration SoftPLC, the test was run directly on the
host operating system.

2) CODESYS Monitoring: The goal of this test was to assess
the performance of the SoftPLC or vPLC communicating over
EtherCAT from a software perspective. In this context, a task
refers to a time-based flow unit of an IEC program that calls
one or more Program Organization Units (POUs). For the
configurations implemented in this work a project containing
two tasks was used: The main task, which contains the PLC
program and the EtherCAT task, which handles the EtherCAT
frame to communicate with the I/O module. The main and
EtherCAT tasks called one POU. The POU called by the main
task copied the value of a digital input into a digital output
using Structured Text (ST). This POU had two variables that
were respectively linked to the physical input and output bits of
the I/O module. The POU called by the EtherCAT task was not
examined. CODESYS Monitoring is a native tool integrated
into the CODESYS Development System version 3.5.17.0 that
provides, in real-time, metrics from a task running in a PLC,
including:

Cycle period The period with which the task is cyclically
executed.

Cycle time This metric represents how long a task takes to
execute. It measures elapsed time between the time at
which a task starts and when it finishes.

Jitter The difference between the time a task should start

and the time at which it started. It should be noted that
negative jitter values can also be expected in this metric.

CODESYS Monitoring also provides internal details about
the tasks running in the PLC. In particular, for the EtherCAT
task, it shows the number of EtherCAT frames sent and how
many frames would go missing during the transmission. The
CODESYS Development System was installed on a local
computer in the same network as the server hosting the virtual
PLCs. This test was run for 2 hours. Cyclic interval was chosen
as the condition to trigger the start of the tasks. The set cycle
period for the main and EtherCAT task was 500 µs and both
execution priorities were set to 1.

3) Input/Output test: This test aims to assess the behavior
of the vPLC from a software and hardware perspective. The
oscilloscope used for the tests was the PicoScope 2205A MSO.
The main and EtherCAT tasks called one POU, the set cycle
period for the main and EtherCAT task was 500 µs and both
execution priorities were set to 1 as well. Three input/output
tests were performed on each of the configurations:
Period Jitter In this test, the period jitter of a 100 Hz PWM

signal generated by the PLC was externally measured. The
aim of this test is determining whether the vPLC would
be suitable for applications where a PWM signal needs
to be generated, e.g. motion control without a driver. For
this test 1394 cycles were considered.

Switching time In this test, the switching time of the PLC
was externally measured. To achieve this, a program that
toggled an output of the PLC was run and the pulse
width of the signal was measured with the oscilloscope.
The POU called by the main task toggled the value of
a digital output using Structured Text (ST). This POU
had one variable linked to the physical output bit of the
I/O module. This test aims to determine how long the
execution of one cycle of a PLC task would last and how
much jitter could be observed at the PLC output. For this
test 4175 cycles were considered.

Response time from input to output The experimental re-
sponse time of the PLC was externally measured with the
oscilloscope. To attain this, a +24v squared signal was
externally generated and connected to the input module
of the PLC. The POU called by the main task copied
the value of a digital input into a digital output using
Structured Text (ST). This POU had two variables that
were respectively linked to the physical input and output
bits of the I/O module. Then, the time that it took for
the PLC to change the status of an output based on this
input was measured. This metric was named experimental
response time from input to output. This would offer an
evaluation from a full loop perspective that encompasses
input hardware, processing software and output hardware.
For this test 1200 of each rising and falling edges at the
PLC input were considered.

D. Results

The results of the previously described tests are shown in
this section.



101

103

105

107

109

1vPLC
2vPLC
2vPLC+L
SoftPLC

0 20 40 60 80

101

103

105

107

109

0 20 40 60 80
Latency (µs)

Sa
m

pl
es

Fig. 4. Latencies recorded while running Cyclic Test during 12 hours on each
of the configurations under test.

1) Cyclic Test: Figure 4 shows the recorded latencies for
every configuration. By comparing the maximum observed
latency of configuration SoftPLC (without hypervisor) with the
maximum observed latency of the other configurations (with
hypervisor), it can be observed that the usage of the hypervisor
did not increase the maximum registered latency. The average
latency was lower without a hypervisor.

2) CODESYS Monitoring: Table II summarizes the results
obtained for all configurations with CODESYS Monitoring. It
can be inferred that between configuration SoftPLC (without
hypervisor) and configurations 1vPLC, 2vPLC and 2vPLC+L
(with hypervisor), a slight increase in the cycle time and jitter
arises for both main and EtherCAT tasks. The larger differences
were observed in the average cycle time of the EtherCAT task
as this metric was lower for SoftPLC, i.e., the execution of
the EtherCAT task was faster in the SoftPLC configuration.

It was noted in all the configurations that EtherCAT frames
were going missing. It should be also mentioned that the
average of the values is directly retrieved from CODESYS
Monitoring and no decimal positions beyond 1 ms were shown
in these values.

3) Input/Output Tests: The following results were obtained
for each of the input/output tests:
Period Jitter The period jitter bars in Figure 5 portray the

measured average period and period jitter for all configu-
rations. All configurations showed similar period average
values. However, significant differences can be observed
when considering the jitter of the signal, i.e., the black
error bars on top of the average bars. The lowest jitter
was obtained with configuration SoftPLC. Configurations
1vPLC, 2vPLC and 2vPLC+L showed considerably higher
jitter than the SoftPLC configuration.

Switching time The switching time bars in Figure 5 represent
the average switching time for all configurations. No
significant differences were observed in terms of average
switching time or switching time jitter, i.e., the black error
bar on top of the average bars.

Response time from input to output The response time for

Fig. 5. Average values of the metrics retrieved in the input/output tests
performed on each of the configurations under test for the vPLC communicating
over EtherCAT. The vertical black error bars represent the minimum and
maximum recorded values.

rising edges and response time for falling edges bars
in Figure 5 represent the average experimental response
time from input to output for rising and falling edges at
the input. No significant differences could be identified
between the average values of the response times for
rising and falling edges when comparing the implemented
configurations with each other. However, in terms of
response time jitter values, i.e., the black error bar on
top of the average bars, it can be inferred that lower
experimental maximum response times, for both rising and
falling edges, were observed on configuration SoftPLC.
Additionally, significant differences were observed in the
response time depending on whether the triggering change
at the PLC input would be a rising or falling edge. It can
be observed that the response time for falling edges would
take on average longer than for rising edges. Figure 6
shows the input and output signal behavior of the PLC
when the response time from input to output was being
measured by connecting a generated squared signal into
the input of the PLC and connecting the output into
an oscilloscope. The horizontal error bar represents the
minimum and maximum recorded values for the response
times from input to output.

V. DISCUSSION

In this section, the results presented in subsection IV-D
are addressed to assess the performance of the configurations
under test.

The maximum latencies observed with Cyclic Test indicate
that the server with a real-time hypervisor would deliver a
similar performance, in terms of maximum latency, to a server
without a hypervisor. The real-time tuning done for the virtual
machines hosted in the hypervisor ensures that no other tasks
use the cores assigned to each virtual machine and another core
is responsible for the hypervisor-level tasks, this contributes



TABLE II
METRICS OF THE PLC PROJECT OBTAINED WITH CODESYS MONITORING FROM THE CODESYS IDE FOR THE EVALUATION OF THE VIRTUAL PLC

Metric (µs) / Configuration 1vPLC 2vPLC 2vPLC+L SoftPLC

Task Main EtherCAT Main EtherCAT Main EtherCAT Main EtherCAT
Set Cycle Period 500 500 500 500 500 500 500 500
Min. Cycle Time 1 5 1 4 1 4 1 3
Avg. Cycle Time 2 9 1 10 1 14 1 4
Max. Cycle Time 28 45 32 51 36 77 18 21

Min. Jitter -31 -30 -38 -42 -28 -35 -26 -20
Max. Jitter 30 30 38 41 29 37 26 20

Fig. 6. Average response times from input to output for rising and falling
edges at the input measured in configuration 1vPLC. The horizontal error bars
represent the minimum and maximum recorded values.

to having similar maximum latencies when compared to a
server without a hypervisor. However, the average registered
latency was lower without a hypervisor due to the additional
hypervisor layer. Similar average and maximum latency values
registered between configurations 1vPLC, 2vPLC and 2vPLC+L
suggest that hosting multiple vPLCs or loading the server with
additional activities will not influence the latency behavior. It is
important to note that, when compared to the average latency,
the maximum observed latency gives a closer estimate of the
worst-case latency. Worst-case latencies are a significant factor
to consider for safety-critical applications [24].

The lower cycle times observed in the SoftPLC configuration
for the EtherCAT task and not the main task indicate that
the higher latencies observed in the configurations with a
hypervisor arise from the hypervisor’s networking infrastructure
because the EtherCAT task accesses the devices through an
Ethernet interface, whereas the main task does only processing.

The results observed in the input/output test for period jitter
in the signal revealed that this specific implementation of the
vPLC should not be used for applications requiring low jitter
at the output, e.g., motion control. However, it would still be
possible to do motion control using a driver between the vPLC
and the device to be controlled, e.g. a servo motor or robotic
arm.

The results obtained in the input/output test for the switching
time test were similar with the ones obtained in the CODESYS

Monitoring test as the period time of both main and EtherCAT
task were set to 0.5 ms and their execution times were within
tens of microseconds. It should be noted that the rising and
falling times of the output module also add jitter to the
measured times. This test shows as well that the vPLC can
nearly perform as well as the SoftPLC running on a server
without a hypervisor, i.e., a traditional SoftPLC implementation.

The differences observed in the input/output test for the
experimental maximum response times between rising and
falling edges can be attributed to the switching times for the
digital output terminal Beckhoff EL2809, which are 60 µs for
switching on and 300 µs for switching off. A further reason
is the asymmetry of the 3ms input filter time for rising and
falling edges of the digital input terminal of Beckhoff EL1809.
Two further factors that increased the experimental maximum
response times were the loss of EtherCAT packets while being
transmitted and the time overhead added by the virtual switch
in the VMware hypervisor connecting the virtual machine with
the physical network interface card.

The measured maximum response times suggest that the
vPLC can be used in areas of industrial automation without
hard real-time requirements that can deal with a slightly longer
response and switching time than the SoftPLC in a server
without a hypervisor has. For instance, in factory automation,
where response times between 5-10 ms are acceptable [25].

The results presented in this work and observations done
throughout the implementation indicate that there are aspects
that could enhance the performance observed in the configu-
rations under test. This work can be improved with a deeper
analysis of the networking infrastructure within the hypervisor.
Two indicators highlight the relevance of this matter. First, the
average cycle time for the EtherCAT task, i.e., the task dealing
with the transmission of the EtherCAT frame, was larger for
those configurations using a hypervisor. Second, EtherCAT
packets were lost during the transmission, these had to be
resent and, therefore, the task would take longer to execute.

A further pending issue is the hardware properties of the
EtherCAT input/output module, which were not considered as
part of this work. The input/output module could be replaced
by a faster module, i.e., with a lower input filter and faster
rising and falling times for the output. This would lead to
shorter response times from input to output and less jitter on
average. Other PLC runtimes could be tested to compare its



performance with CODESYS Control for Linux. CODESYS
Control for Linux was chosen for these experiments because
of the broad fieldbus support and monitoring tools.

VI. CONCLUSION

In this paper the concept of virtual PLC was explored,
implemented and evaluated. This notion can help overcome the
limitations of hardware-based PLCs by offering more flexibility,
better resource usage, scalability and lower costs. In addition,
it can fulfill the functions of PLC, HMI and programming
terminal.

Tests were performed from a software and hardware per-
spective encompassing host software performance, hypervisor
behavior, PLC and input/output module performance. Based
on the results obtained in the experimental configuration, it
has been seen that using a real-time hypervisor increased
the average system latency while maintaining the maximum
observed latency consistent. This suggests that the usage of
a real-time hypervisor would not decrease the performance
in terms of determinism. The evaluated configurations of the
virtual PLC in a server exhibited, on average, a maximum
experimental response time from input to output of 3.67 ms,
being 0.274 ms larger than a SoftPLC running in the same
hardware without hypervisor. The test performed also revealed
that the virtual PLC can deliver similar performance in terms
of switching time while having an increased period jitter. It
can also be deduced from the evaluation tests that whether the
server’s resources are used to their maximum capacity or not
does not influence the performance of the individual virtual
machines or virtual PLCs.

This experimental evaluation can be followed up with longer
and more exhaustive studies on the real-time performance of the
hypervisor, behavior of the input/output modules, networking
and hardware elements. For instance, implementations with
other virtual network topologies, instead of using a virtual
switch or different setups within the PLC programming
environment in CODESYS. The results indicate that virtual
PLCs in servers with a hypervisor is currently a viable option
for important domains of factory automation, where response
times between 5-10 ms are acceptable. The observations
made in this work indicate that networking and I/O module
enhancements are needed and these would improve the response
times measured in the configurations implemented. This points
out that virtual PLCs in COTS servers could become a vital
component of future industrial automation systems to control
a broad spectrum of processes.

REFERENCES

[1] J. Waltl, Unchain the ShopFloor through Software-Defined Automation,
May 2018. [Online]. Available: https://www.engineersrule.com/unchain-
shopfloor-software-defined-automation/ (visited on 04/05/2022).

[2] H. Forbes, The End of Industrial Automation (As We Know It), Dec.
2018. [Online]. Available: https://www.arcweb.com/blog/end-industrial-
automation-we-know-it (visited on 04/28/2022).

[3] Y. Koren, The Global Manufacturing Revolution: Product-Process-
Business Integration and Reconfigurable Systems. New Jersey: John
Wiley & Sons, Ltd, 2010, pp. 227–252.

[4] I. Garbie and A. Garbie, “Outlook of requirements of manufacturing
systems for industry 4.0,” in 2020 Advances in Science and Engineering
Technology International Conferences (ASET), Dubai, Feb. 2020, pp. 1–
6.

[5] S. Vaidya, P. M. Ambad, and S. M. Bhosle, “Industry 4.0 a glimpse,”
Procedia Manufacturing, vol. 20, pp. 233–238, 2018.

[6] R. Langmann and M. Stiller, “Cloud-based industrial control services:
The next generation PLC,” in Online Engineering & Internet of Things.
Lecture Notes in Networks and Systems. Cham: Springer International
Publishing, 2018, vol. 22, pp. 3–18.

[7] P. Gaj, J. Jasperneite, and M. Felser, “Computer communication within
industrial distributed environment a survey,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 182–189, Jul. 2013.

[8] J. Mellado and F. Nuñez, “A container-based iot-oriented programmable
logical controller,” in 2020 IEEE Conference on Industrial Cyberphysi-
cal Systems (ICPS), vol. 1, Tampere, Jun. 2020, pp. 55–61.

[9] E. R. Alphonsus and M. O. Abdullah, “A review on the applications of
programmable logic controllers (PLCs),” Renewable and Sustainable
Energy Reviews, vol. 60, pp. 1185–1205, Feb. 2016.

[10] T. Cruz, R. Queiroz, P. Simoes, and E. Monteiro, “Security implications
of SCADA ICS virtualization: Survey and future trends,” in ECCWS
2016 - 15th European Conference on Cyber Warfare and Security,
Munich, Jun. 2016.

[11] O. Givehchi, J. Imtiaz, H. Trsek, and J. Jasperneite, “Control-as-a-
service from the cloud: A case study for using virtualized PLCs,” in
2014 10th IEEE Workshop on Factory Communication Systems (WFCS
2014), Toulouse, May 2014, pp. 1–4.

[12] T. Goldschmidt, M. K. Murugaiah, C. Sonntag, B. Schlich, S. Biallas,
and P. Weber, “Cloud-based control: A multi-tenant, horizontally
scalable Soft-PLC,” in 2015 IEEE 8th International Conference on
Cloud Computing, New York, Jun. 2015, pp. 909–916.

[13] C. Pallasch, S. Wein, N. Hoffmann, M. Obdenbusch, T. Buchner,
J. Waltl, and C. Brecher, “Edge powered industrial control: Concept
for combining cloud and automation technologies,” in 2018 IEEE
International Conference on Edge Computing (EDGE), San Francisco,
CA, Jul. 2018, pp. 130–134.

[14] A. Badar, D. L. Zhe, U. Graf, C. Barth, and C. Stich, “Intelligent edge
control with deterministic-ip based industrial communication in process
automation,” in 2019 15th International Conference on Network and
Service Management (CNSM), Halifax, Oct. 2019, pp. 1–7.

[15] T. Cruz, P. Simoes, and E. Monteiro, “Virtualizing programmable logic
controllers: Toward a convergent approach,” IEEE Embedded Systems
Letters, vol. 8, no. 4, pp. 69–72, Sep. 2016.

[16] Cyclictest, The Linux Foundation, Aug. 2018. [Online]. Available:
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/
cyclictest/start (visited on 11/03/2021).

[17] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in Xen,” in USENIX 2006 Annual Technical Conference,
Boston, Jun. 2006.

[18] Y. Dong, D. Xu, Y. Zhang, and G. Liao, “Optimizing network I/O
virtualization with efficient interrupt coalescing and virtual receive
side scaling,” in IEEE International Conference on Cluster Computing,
ICCC, Austin, Sep. 2011.

[19] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards real-time
hypervisor scheduling in Xen,” in Embedded Systems Week 2011,
ESWEEK 2011 - Proceedings of the 9th ACM International Conference
on Embedded Software, EMSOFT’11, Taipei, Oct. 2011.

[20] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik,
“Supporting soft real-time tasks in the Xen hypervisor,” in VEE 2010
- Proceedings of the 2010 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, New York, Mar. 2010.

[21] J. Heo, “Voice over IP (VoIP) performance evaluation on VMware
vSphere 5,” VMware Inc., Palo Alto, CA, Tech. Rep., Dec. 2011.

[22] J. Heo and L. Singaravelu, “Performance study: Deploying extremely
latency-sensitive applications in VMware vSphere 5.5,” VMware Inc.,
Palo Alto, CA, Tech. Rep., Sep. 2015.

[23] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux
kernel: A survey on PREEMPT RT,” ACM Comput. Surv., vol. 52,
no. 1, Feb. 2019.

[24] L. Zhao, P. Pop, and S. S. Craciunas, “Worst-case latency analysis
for IEEE 802.1 Qbv time sensitive networks using network calculus,”
IEEE Access, vol. 6, pp. 41 803–41 815, 2018.

[25] PROFIBUS International, “PROFINET Real-Time Communication,”
Tech. Rep., 2013.

https://www.engineersrule.com/unchain-shopfloor-software-defined-automation/
https://www.engineersrule.com/unchain-shopfloor-software-defined-automation/
https://www.arcweb.com/blog/end-industrial-automation-we-know-it
https://www.arcweb.com/blog/end-industrial-automation-we-know-it
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

	Introduction
	Background
	PLCs in the cloud
	Industrial control from the edge
	Virtualized PLCs on a real-time hypervisor on the field
	Real-time hypervisors

	Methodology
	Architecture

	Evaluation
	Implementation
	Configuration under Test
	Tests
	Cyclic Test
	CODESYS Monitoring
	Input/Output test

	Results
	Cyclic Test
	CODESYS Monitoring
	Input/Output Tests


	Discussion
	Conclusion

