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Abstract—Resilience is a critical quality of future Industrial
Control Systems (ICS). The ability to detect and react to
unanticipated attacks, bugs, and failures is crucial. Self-adaptation
can provide this ability, yet it is difficult to achieve in safety-critical
real-time systems, since strict safety and timing requirements
must be guaranteed. Recent results indicate that automated
adaptation of ICS using the IEC 61499 is possible, however
it has not been analyzed how much dynamic adaptation can
contribute to overall system resilience. In this paper, we analyze
how dynamic adaptation can be embedded into industrial control
architectures, and quantify its advantage over a traditional restart.
We propose a self-adaptive architecture using the MAPE-K model
and merge it with the existing models for ICS. Using measurements
on a real system, we estimate the expected adaptation time of
selected adaptation scenarios and calculate the loss of productivity
depending on the reaction time and adaptation complexity. The
results show that using current dynamic adaptation mechanisms,
minor to moderate adaptations can be completed within 10 ms,
while larger adaptations can take up to a second from initialisation
to cleanup. The resilience gain is larger the faster the reaction
is initiated, which indicates that once dynamic adaptation is
available, a faster detection and decision-making becomes more
important. Dynamic adaptation can provide ICS the means to
evolve and react rapidly, preparing them for an agile, flexible,
and resilient future.

Index Terms—Dynamic Reconfiguration, Downtimeless System
Evolution, Resilient Industrial Control System

I. INTRODUCTION

Resilience is a trait that sets the human apart from the
machine. It describes the fundamental ability of surviving
and overcoming hardship. In technical or industrial systems,
we strive to embed this ability into the machine to make it
robust against unexpected failures, bugs, or attacks. While
current industrial control architectures are designed to be
reliable (e.g. against expected failures), resilience is often
overlooked. In other domains, autonomic computation and
self-adaptation, which permit resilience, are openly being
discussed [1, 2]. The Industrial Internet of Things, for instance,
introduces an abundance of resilience potentials (in the form of
interconnections and redundancies) [3]. Current static industrial
control architectures struggle to incorporate these potentials
due to their inflexibility and rigidity, thus preventing resilience.

Reconfigurable and flexible manufacturing systems have been
proposed to handle the frequent changes in requirements, and
to make manufacturing systems more cost effective [4]. These
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Fig. 1. The IEC 61499 provides device and resource layer models to separate
the control application from the resources. The MAPE-K model can add a
self-adaptation layer that provides resilience, flexibility, and agility.

high-level concepts are mostly concerned with quickly adjusting
production capacity and functionalities according to market
demand. The use of reconfiguration and flexibility to improve
safety and availability of functionality, on the other hand, is not
commonly addressed. By contrast, autonomic computation and
self-adapting architectures are closely related to fault-tolerance
mechanisms. The MAPE feedback loop (Monitor, Analyze,
Plan, Execute) is designed to handle unanticipated changes,
faults, or attacks [1, 5].

The key to self-adaptation is the ability to adapt, which
current ICS struggle to achieve. Industrial standards, such as
the IEC 61499, enable dynamic reconfiguration or adaptation
of distributed industrial control software, yet it is rarely used
since the standard does not explain how to achieve it safely
and in real-time. Recent results in research, however, indicate
how real-time dynamic adaptation can be implemented safely
[6, 7]. Yet, there is currently no consensus on when and how
dynamic adaptation can or should be used in practice.

In this paper, we propose a self-adaptive architecture for ICS,
as displayed in Figure 1, which merges the MAPE-K feedback
loop and the IEC 61499 models for ICS. Dynamic adaptation
on the runtime level enables distributed self-adaptation. This ar-
chitecture promises to provide superior resilience and flexibility,
and this paper aims to assess the resilience gain introduced by
dynamic adaptation. Thus, we address the following research
question: What is the quantitative impact of dynamic adaptation
on the system resilience of Industrial Control Systems?

We briefly introduce the relevant origins of (self-) adaptation
and outline the state of the art in dynamic adaptation of ICS
in Section II. Section III establishes the concepts of resilience,



and how this metric can be quantified. We propose the resilient
ICS architecture in Section IV, and highlight the phases of
dynamic adaptation. In Section V, we evaluate the potential of
dynamic adaptation by providing measurements, extrapolating
the required adaptation times, and quantifying the resilience
gain of dynamic adaptation. Further research directions are
proposed in Section VI, and we conclude in Section VII.

II. BACKGROUND

In this section, we introduce the concepts of dependability
and fault-tolerance, before advancing to self-adaptation. We
then shortly summarize the state of the art in dynamic
adaptation for ICS that we build upon.

A. Dependability & Fault-Tolerance

A large body of research is devoted to increasing the
dependability of technical systems. The term covers all facets
of the desire to provide trusted and correct services. It integrates
attributes such as availability, reliability, safety, and integrity
[8]. We use the common definitions of fault, error, and failure:
A fault is a (internal or external) flaw, bug, or vulnerability that
may eventually lead to an error, i.e. an unintended outcome.
An error may lead to a failure, i.e. the inability to perform
the required service [9]. Thus, the goal of dependable system
design is to reduce the number of faults, errors, and failures.

Generally, dependability can be increased in numerous ways.
Apart from prevention, forecasting, and removal of faults, fault-
tolerance is the concept of preserving a service in the presence
of faults [8]. It is often used together with other terms such as
fail-safe or fail-operational behavior, and their definitions can
vary [10]. We do not differentiate between these terms.

In its essence, fault-tolerance is the exploitation of redun-
dancy, i.e. having more resources (among some dimension)
than necessary [9]. This allows for the compensation of a fault,
e.g. by reallocating resources, switching to a replacement,
or degrading non-essential functionalities. Many of these
mechanisms are implemented beforehand, and resources are
allocated in anticipation of a fault. Yet, in technical applications,
it is infeasible to anticipate and prevent all faults. Over time,
components degrade, requirements change, and the environment
transforms. Adaptation in response to these changes is a
desirable property in technical systems and may lead to resilient
behavior.

B. Self-Adaptation

The bottom-line of fault-tolerance is to achieve a satisfactory
level of autonomy when facing a particular fault. This vision
has been established in research, and while progress has been
made, it has not been achieved [11]. A common approach to
self-adaptation is the MAPE-K model (Monitoring, Analysis,
Planning, Execution over Knowledge) [1, 5]. An integration of
this model into an industrial automation system is displayed
in Figure 1. The knowledge (K) represents all data and
information shared between components, such as the particular
configurations, or adaptation goals. During the monitoring
(M), further information is gathered that contributes to the
knowledge. During analysis (A), the knowledge is examined to

determine whether or not an adaptation is necessary. If so, the
planning (P) phase allows the preparation and development of
the adaptation procedure, which will be initiated and completed
during the execution (E) phase.

This model is suitable for both centralized, as well as
decentralized architectures [12]. The architecture displayed
in Figure 1 is a hybrid model, in which the monitoring
and execution is decentralized, whereas the (computationally
heavy) analysis and planning phases are performed on a central
infrastructure. This is similar to the approach in [13], where
the control devices are active participants in the decision-
making process through a consensus. In this paper, we focus
on the adaptation capability, thus centralized decision-making
is sufficient.

The integral element of any self-adaptation model is the
ability to adapt, which is particularly difficult for stateful
systems with real-time constraints, such as ICS. In the next
section, we illustrate the state of the art on dynamic adaptation
of ICS, in contrast to non-dynamic adaptation, i.e. a restart of
some form.

C. Dynamic Adaptation of Industrial Control Systems
Industrial Control Systems (ICS) are safety-critical real-time

systems. As such, they must satisfy strict requirements and
must undergo extensive verification and validation. In [14], the
potentials of self-adaptation in ICS are detailed, specifically
for typical IEC 61131-3 POUs / tasks. A key insight is that the
adaptation may disturb the execution, thus the advantage of an
adaptation must be weighed against the risks of a delay. This is
particularly important for traditional ICS with computationally
heavy, monolithic tasks.

At this point, it is convenient to introduce the IEC 61499,
which extends the models of the IEC 61131-3, with the benefit
of splitting the monolithic state to facilitate distribution and
reconfiguration [15]. All state is encapsulated inside function
blocks (FBs), and execution is event-triggered instead of
cyclic. Dynamic reconfiguration of IEC 61499 applications
has been proposed since its inception, yet it’s rarely applied
in practice. Two main challenges of dynamic reconfiguration
are the correctness or preservation of consistency, and the
satisfaction of real-time constraints [15]. We do not distinguish
between dynamic adaptation and dynamic reconfiguration and
use the terms interchangably.

Recently, it has been shown that it is possible to auto-
matically generate reconfiguration sequences for a variety of
reconfiguration scenarios, while preserving the consistency of
the execution behaviors [6]. This is facilitated by the ability to
precisely modify only the affected FBs, and the event-triggered
execution. While for many scenarios no further information
is required, some adaptations require details, e.g. regarding
the necessary state transformation. For self-adaptation, this
information could be present in the knowledge base.

The real-time execution of the IEC 61499 was addressed by
[16]. More recently, it was shown in [7] that the schedulability
of an ICS using IEC 61499 under reconfiguration can be
decided for Rate Monotonic (RM) scheduling using the
schedulability condition
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Fig. 2. The resilience graph allows the quantification of a resilience loss over time. The MAPE-K model can be integrated into this graph to highlight how the
phases of the model affect the resilience loss.
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where Ci is the execution time, Bi is the blocking time, and
Ti is the rate and deadline for n real-time tasks sorted by their
rate. Priority inversion for shared resources and suspension
must be avoided using a Priority Ceiling Protocol (PCP). The
blocking time Bi is defined by the blocking by shared access to
FBs, and the suspension caused by a reconfiguration sequence.

As a consequence, dynamic adaptation of ICS without
violating the real-time constraints is currently possible. In
this paper, we investigate the feasibility of dynamic adaptation
and quantify the potential benefits over an offline adaptation,
i.e. a restart.

III. RESILIENCE QUANTIFICATION

Measures of fault-tolerance commonly rely on qualitative
differences, i.e. the system is fault-tolerant of a specific fault
or not. Thus, they struggle to quantify degradation [9]. By
contrast, resilience is commonly used in a quantitative context,
i.e. a person / system is more resilient than another. In this
paper, we use an established resilience metric to quantitatively
assess the impact of dynamic adaptation in response to a fault.

Various definitions of resilience from numerous domains are
outlined in [17]. We use the following definition: “Resilience
is the ability to prevent something bad from happening, Or the
ability to prevent something bad from becoming worse, Or the
ability to recover from something bad once it has happened.”
[18]. There are three components in this definition: Prevention,
survival, and recovery. These distinct behaviors will emerge
again in the evaluation as part of different scenarios.

Resilience can be quantified as a function of time and
visualized in a resilience graph [19]. An example is displayed
in Figure 2, where the phases of the MAPE loop are inserted.
[19] identified three distinct system states: The original state,
a disrupted or degraded state, and a recovered state. In our
specific example, the original state ends with the failure, and
the degraded state ends when an adaptation is executed. In
practical applications, the graph may be arbitrarily complex.

A failure generally leads to a loss in some metric. If a
failure does not create any loss, then no action is required.
Computation of a loss requires the definition of a figure of
merit F (•) [19]. For the domain of industrial control, possible
metrics could be productivity, process quality, or process /

communication delays. Since we focus on the methodological
aspects of resilience quantification, for the rest of the paper,
we assume a figure of merit F (•) for which increasing
values are preferred, and we assume that the system can
be sufficiently quantified using a single metric. For practical
applications, multiple metrics may be necessary to fully capture
the complexities.

A. Calculation

Using the aforementioned metric, it is possible to calculate
the loss of this metric over time. [20] introduces the calculation
of a resilience loss

RL =

∫ t1

t0

[100−Q(t)]dt (2)

by integrating the loss of quality over time, where the quality
Q(t) is given as a value from 0 to 100. A smaller resilience
loss would thus indicate higher resilience. For our purposes,
we choose an abstract quality of service, e.g. productivity,
as our figure of merit, which can be measured in percent. By
integrating this metric over time, we receive the lost productivity
in the unit of time. For example, if a failure causes a total loss
of function for 5 seconds, this would lead to an equivalent
resilience loss as a partial loss of 50% for 10 seconds.

A difficulty of resilience quantification is the choice of
metric, and the comparison between metrics. Mitigating a
loss in one metric by compensating it with another metric
requires a conversion factor that is often hard to derive. In
our case, we can assume that a fault will lead to a failure of
the ICS, which will directly cause a loss of productivity. We
explicitly exclude faults and failures that must immediately lead
to a full shutdown to prevent catastrophic consequences, for
example an emergency stop, since there can be no meaningful
quantification of losses in this case. This does not mean that
dynamic adaptation can not be used to deal with these faults
and failures, if anything it may be the only reasonable solution
for true non-stop systems. However, the added risk of failure
during the adaptation must be carefully considered.

IV. ROLE OF ADAPTATION IN RESILIENT INDUSTRIAL
CONTROL SYSTEMS

In this section, we demonstrate the signficance of self-
adaptation for resilient ICS, and introduce a self-adaptive
architecture for industrial control based on the existing concepts
of the IEC 61499. In the next section, we will quantify the
adaptation durations and system resilience.
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Eventually, it can be disassembled in the teardown phase.

A. Self-Adaptation Lifecycle

A common self-adaptation model is the MAPE (Monitor,
Analyze, Plan, Execute) loop [1, 5]. It consists of the four
aforementioned phases, and can be implemented in various
design patterns [12]. Figure 1 introduced a possible architecture,
in which the monitoring and execution phases are distributed,
and the anlysis and planning is centralized. This causes minimal
overhead on the real-time execution, and allows sophisticated
methods to be used for analysis and planning.

In this paper, we mainly focus on the execution, thus we
split the MAPE cycle in two separate phases: A detection and
decision-making phase (MAP), and the execution phase. We
can calculate the duration of the two phases as

dMAP = dM + dA + dP , (3)

where dM , dA, and dP are the durations of the first three
phases, and

dMAPE = dMAP + dE , (4)

where dE is the additional duration of the execution phase. The
duration dMAP is thus the timespan between the manifestation
of the fault, and the start of the reaction to it. The full duration
dMAPE ends when the reaction is fully implemented. In the
following, we are mostly concerned with the impact of the
adaptation duration dE , and how it affects the system behavior
and resilience.

B. Adaptation Phases

The adaptation of ICS using the IEC 61499 can be split
into five phases [21] that deal with the assembly, execution,
and teardown of a Reconfiguration Control Application (RCA)
(Figure 3). The RCA is executed in parallel with the control
application, and modifies it on the fly. The five adaptation
phases are:
PRE The RCA is transmitted to the control device and

assembled in a separate resource using the same operations
that are used for the reconfiguration. This phase is non-
critical and can be performed over a long period of time.

RINIT After the RCA is started in parallel with the control
application, non-critical operations, such as the addition of
FBs, can be performed. At this stage, the RCA is executed
concurrently with the control application, but with a lower
priority.

RECONF In this critical phase, parts of the control application
are suspended to prevent unpredictable state changes, and
the real-time behavior is disturbed. In a well-designed
RCA, the disturbance must not cause the violation of a
deadline [7].

RDINIT Once the execution of the control application is
resumed, the final non-critical operations remove left-over
elements on the application resources, such as removed
FBs. This can be performed concurrently with a lower
priority.

POST Eventually, the RCA has to be removed to free the
resource for further reconfigurations. In this phase, the
RCA can either be disassembled, or the entire resource
could be deleted.

The duration of the adaptation can be calculated as the sum
of the individual durations of each phase:

dE = dPRE
E + dRINIT

E + dRECONF
E + dRDINIT

E + dPOST
E . (5)

Each duration d depends on required execution time C, which
is a result of the complexity of the adaptation and is directly
affected by the utilization U of the resource. Generally, the
exact duration is affected by the scheduling, yet a good estimate
can be achieved by dividing the execution time C by the
utilization U :

dXE =
C

U
. (6)

Given that FBs are short-running and must terminate quickly,
and RCAs are commonly made up of a large number of FBs,
this estimate is accurate for our analysis, since small scheduling
differences will average out. In the following section, we
calculate the estimated adaptation times for different scenarios
using measured execution times.

V. EVALUATION

We evaluate the impact of dynamic adaptation on the system
resilience, and quantify the gain that can be achieved. For
this purpose, we compare dynamic adaptation to a traditional
restart scenario, in which the system must be first ramped-down,
restarted, and finally ramped-up again.

To get a realistic estimate of the required adaptation times,
we first measure the execution time of the elements within a
simple Reconfiguration Control Application (RCA). Then, we
estimate the expected duration of larger adaptations, before
we finally quantify the resilience gain over a restart scenario.
This allows us to identify the scenarios in which dynamic
adaptation is particularly useful, and what attributes contribute
in its favour.

A. Measured Execution Time

To measure the execution time of the individual reconfigu-
ration services, we implement a small IEC 61499 application,
and perform a minor adaptation. The application behavior is
simplistic and irrelevant to the measurements (Figure 4a). The
adaptation we perform is the exchange of a single FB and
the corresponding removing and adding of connections. After



(a) IEC 61499 Application
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Fig. 4. The test reconfiguration control application (4b) switches the FB
E SR A in the application (4a) every two seconds using 12 reconfiguration
operations.

TABLE I
STATISTICS OF THE MEASURED EXECUTION TIMES OF THE

RECONFIGURATION FBS, AS PERFORMED BY THE TEST APPLICATION.

Function Block Mean Std Min Max

EC START ELEM 2.98 µs 1.38 µs 2.46 µs 21.28 µs
EC STOP ELEM 3.22 µs 1.54 µs 2.50 µs 25.45 µs
ST CREATE CONN 3.87 µs 1.46 µs 3.09 µs 25.09 µs
ST CREATE FB 11.34 µs 3.27 µs 9.20 µs 51.06 µs
ST DEL CONN 4.05 µs 1.38 µs 3.26 µs 24.48 µs
ST DEL FB 3.36 µs 1.15 µs 2.91 µs 19.19 µs

the adaptation is done, we revert the changes back to the
initial configuration. The RCA consists of two sequences of
each 12 operations and is displayed with the distinct phases
in Figure 4b. Within each sequence, we first create the new
FB, before we stop the old FB and the one connected to it to
preserve consistency [6]. Then we delete the old connections,
add the new connections, resume the FBs and delete the old
FB. Every two seconds, the FB is switched and we measure
the execution times of each FB within the RCA.

The measurement is performed on a Raspberry Pi 4B+ with
Raspberry Pi OS with the PREEMPT RT patch applied. The
IEC 61499 application is modelled in 4diac and executed in
4diac FORTE [22] for one hour. The source code is modified
to log relevant scheduling information, leading to 1800 data
samples. All superfluous OS services and throttling are disabled,
and the RT priority of 4diac FORTE is maximized. The results
of this measurement are summarized in Table I, and the
distributions are visualized in Figure 5. We can identify two
groups: Most services are performed in around or under 4 µs,
while the creation of a new FB requires on average 11.34 µs.
The distributions show a long tail for longer execution times,
which may be due to the execution platform, the non-real-
time operations system, or the runtime environment. For our
analysis, we stick to the mean value as the estimated execution
time for each service. We do not advocate using our data
for the sake of inferring execution times for safety-critical
applications, since they depend critically on the hardware and
software configuration, yet they suffice to support our analysis.

B. Estimated Adaptation Times

With the measurements of the execution times for each
service, it is possible to estimate the necessary adaptation time

100 101 102

Measured Execution Time ( s)

EC
_ST

ART
_EL

EM

EC
_ST

OP_E
LEM

ST
_CREA

TE
_CONN

ST
_CREA

TE
_FB

ST
_D

EL_
CONN

ST
_D

EL_
FB

Fig. 5. The measured execution times of the reconfiguration FBs indicate a
mean execution time of under 5 µs, except for ST CREATE FB, which takes
around 11 µs. The outliers in the measurement over one hour are rare and
have an insignificant influence on overall execution times.

for different scenarios. We assume four adaptation scenarios:
A minor change, as seen in the previous section, where
only minimal changes are performed, a moderate change of
multiple components, and a major adaptation, which affects
large portions of an application. Additionally, we consider a
composite reconfiguration to represent a distributed scenario
in which multiple devices are reconfigured. For the sake of
simplicity, we ignore additional communication overhead in
this scenario. For the moderate and major reconfigurations,
we assume 10 and 100 added / removed FBs, respectively,
and an average of three connections per FB. In practice, these
numbers are easily achievable if hierarchical subapplications
are modified.

We structure the adaptation into the five phases as described
in Section IV-B. The resulting number of operations per
phase and the corresponding estimated execution times are
summarized in Table II. In our example scenarios, the number
of operations scales linearly with the number of changed FBs.
The estimated execution time behaves identically. The PRE
and POST phases represent a significant overhead, yet they do
not influence the real-time execution. While a minor adaptation
only requires execution time in the order of µs, a moderate
to composite scenario may require milliseconds. Ignoring the
impact on the real-time execution (which is only affected
by the RECONF duration), this adaptation is fast, but not
instantaneous.

These results represent only the expected execution times.
To reach the expected adaptation time, the utilization of the
device must be taken into account, since the system will be busy
with other tasks. Most of the operations will be performed
with a low priority to prevent any disturbance of the real-
time tasks. Consequently, for a device with 80% utilization,
the adaptation time will be 5-times as long. This behavior is
further analyzed in Figure 6, where the estimated adaptation
times are plotted over the system utilization. At a utilization
of 1.0, the adaptation is infeasible, since the additional load



TABLE II
OPERATIONS FOR EACH PHASE FOR FOUR ADAPTATION SCENARIOS, AND

THE CORRESPONDING ESTIMATED EXECUTION TIME (MS).
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Fig. 6. The adaptation time depends on the system utilization. For realistic
utilization levels, the adaptation will terminate within seconds.

would result in missed deadlines. The lower utilization bound
for RM scheduling (0.6931) indicates a typical load that can
be expected. This would allow a major adaptation to take place
in about 100 ms, and a composite adaptation in one second.
Since the utilization bound only considers real-time tasks, the
actual utilization may be higher, and thus the adaptation time
could be longer. Further communication overhead could lead
to adaptation times in the order of seconds.

An important distinction is that the utilization of the system
is decided at design time. While a high utilization is generally
desirable to use the available resources efficiently, this may
make dynamic adaptation infeasible or slow. More efficient
scheduling paradigms, such as earliest deadline first, may
allow even higher utilizations for real-time tasks, thus making
dynamic adaptation even more difficult.

C. Resilience Scenarios

Using the aforementioned estimated adaptation times, we
can now quantify the effect of dynamic adaptation on the
system resilience. We focus first on the two cases of survival

and recovery, an example of prevention will be analyzed as
part of Figure 8.

We base our analysis on a couple of assumptions. Degrada-
tion and recovery follow the resilience graph as introduced in
Section III. A fully-available system has a Quality of Service
(QoS) of 100 %, while a degraded system retains 25 %. During
a restart, the system is disabled. The fault takes places after
5.5 s, the failure after 10 s. Degradation, recovery, and ramp-
down/ramp-up require 2 s to transition from 100 % to 0 %.
A restart takes 5 seconds. The values are inspired by realistic
applications, however tailored to provide a meaningful analysis.
A fault may remain dormant for days or weeks, and a restart
may require a ramp-down in the order of hours to reach a safe
state.

In Figure 7a, a survival scenario is displayed. The reaction
takes place after 5.5 seconds (dMAP), when the failure has
happened and degradation has begun. The restart action quickly
shuts down the system and performs the modification offline.
Using a fast dynamic adaptation, the system can survive the
failure, without reaching a degraded state or having to shut
down. The major adaptation (dE = 0.1s) can be performed
nearly instantaneously. The resilience loss RLA shows a loss
of 0.6 s of production time, which is mostly caused by the
degradation and ramp-up. The restart requires a significant loss
of productivity (RLR = 7.0s).

The recovery scenario in Figure 7b results from a delayed
reaction time (dMAP = 10s), which could be caused by a slow
detection, or a complex decision making algorithm. The system
reaches its degraded state, until finally a reaction is triggered.
In the restart reaction, the system will quickly ramp down and
perform a restart. In the adaptation scenario, the (in this case,
complex) adaptation is triggered, which will cause the system
to remain degraded until the adaptation is done. Finally, the
recovery can begin. Similarly to the survival scenario, dynamic
adaptation provides a significant resilience advantage over a
restart. The loss RLA of 4.9 seconds is still half the expected
loss RLR of a restart.

Further scenarios are sampled in Figure 8. There are
four types of reaction speeds (early, fast, late, and delayed),
and three levels of adaptation complexities are considered
(Minor/Moderate, Major, and Composite). An early reaction
coupled with a minor to major adaptation can, in this example,
prevent an impact on the system, which results in a loss of 0, i.e.
the system is perfectly resilient against this kind of fault/failure.
The composite adaptation will lead to the manifestation of
the failure, and a brief degradation. It must be noted that we
assume a non-critical failure, that does not require an immediate
shutdown. If the failure must be prevented at any cost, and
the risk of its manifestation during the adaptation period is too
large, then an emergency shutdown is necessary.

For the fast, late, and delayed reactions, various resilience
losses can be observed. In all cases, the resilience loss of the
adaptation (RLA) is lower than the loss of the restart scenario
(RLR). This is evident from the fact that the adaptation time is
always shorter than the restart time, which is a valid assumption.
What is noteworthy is that once dynamic adaptation is available,
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Fig. 7. In a survival scenario (7a), the adaptation takes place after the failure occurred, but before a degraded state is reached. The recovery scenario (7b) is a
delayed reaction, once the degraded state has been reached. The resilience loss (RL) in the survival scenario is significantly lower, yet even in recovery, the
adaptation provides a clear advantage over a restart.

the reaction time becomes the critical factor that determines
the system resilience. Without dynamic adaptation, the reaction
time is less important, since the restart will anyways lead to a
loss. Consequently, the currently feasible dynamic adaptation
mechanisms require and facilitate a shift of focus to monitoring,
analysis, and planning phases.

D. Discussion

There are two key insights: First, the advantage of adaptation
over a restart depends on how difficult a restart is. In our
scenarios, we expect a restart to be feasible and reasonably
fast, i.e. within five seconds. For many applications, this is
highly optimistic and unrealistic. Restarting a PLC can require
an extensive ramp-down phase to bring the system into a safe
and known state, from which the system can be safely started.
If, on the other hand, a restart is feasible within a short time-
frame, e.g. because the system is stateless or the change does
not affect the state, then the advantage of dynamic adaptation
fades. We argue that most bugs, failures, or attacks will require
more complicated modifications.

Second, once dynamic adaptation is feasible, available, and
sufficiently fast, the main resilience gain can result from better
monitoring, analysis, and planning methods. After all, an
adaptation can not be faster than instantaneous. More impor-
tantly, dynamic adaptation facilitates further developments in
monitoring, analysis, and planning, since it significantly lessens
the burden of adaptation. A fast reaction that is implemented too
late is similarly ineffective as a quickly implemented reaction
that is detected too late. Yet the ability to quickly adapt together
with a fast detection results in exceptional flexibility and agility.

Dynamic adaptation allows the implementation of any
imaginable adaptation of the system. This allows the reaction
to events that can not be anticipated, e.g. attacks or bugs.
Many faults and failures, by contrast, can be anticipated,
and a reaction can be arranged beforehand, or even directly
implemented within the control application. This allows for
a faster reaction without requiring a lengthy adaptation or
a restart, yet additional resources must be reserved. The
preparation of a reaction may also be coupled with dynamic
adaptation to allow a fast implementation of complex reactions.

VI. RESEARCH DIRECTIONS

Dynamic adaptation can be of great value to ICS. It leads to
greater flexibility and agility of industrial control software.
Yet, while the IEC 61499 generally allows it, it is rarely
used. We believe that dynamic adaptation is a key feature
that distinguishes the IEC 61499 from its alternatives. There
remain plenty of open research directions:
Real-time Scheduling The IEC 61499 allows for more sophis-

ticated scheduling algorithms than the traditional cyclic
PLC execution. While [7] proposes RM scheduling using
a PCP, this is not currently implemented in any existing
IEC 61499 runtime environment, and the models do not
contain the required information, e.g. rates or deadlines.

Distribution Distribution is a crucial dimension of future ICS,
and it must be considered during adaptation. Further, shift-
ing from monolithic to distributed systems simplifies the
simultaneous switch towards concurrency and parallelism,
which could be a great advantage, but is not currently
used.

Monitoring, Analysis, Planning As previously stated, dy-
namic adaptation facilitates further developments in
monitoring, analysis, and planning. The models of the
IEC 61499 do not sufficiently reflect these phases yet:
There are, for example, no satisfactory behavior models
that could be monitored [23]. Automated planning is of
great interest as well [24].

VII. CONCLUSION

Dynamic adaptation is a key component of self-adapting
architectures. Within the MAPE-K model, eventually the
necessary adaptations must be implemented, and this can
be achieved through dynamic adaptation. In ICS, dynamic
adaptation comes with additional requirements on consistency
and timeliness, which can be satisfied [6, 7]. Yet, the feasibility
of dynamic adaptation using the state of the art in research was
an open question. In this paper, we demonstrated the potential
of dynamic adaptation in contrast to a restart of a controller.
The results indicate that the vast majority of adaptations can
be completed in under a second, while preserving consistency
and real-time constraints. Moderate to major adaptations can
be achieved in the order of milliseconds.
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Fig. 8. Dynamic adaptation leads to a significantly smaller resilience loss RL compared to a traditional restart. If the detection and decision making (MAP, ♦)
after the fault (▼) takes place before the failure (×), a degradation can be prevented (RL = 0). Otherwise, dynamic adaptation avoids lengthy downtimes and
can recover much faster.

Our evaluation is based on conservative estimates, since
most ICS can not be quickly stopped and restarted, but require
long ramp-down and ramp-up phases to bring the system into
a safe, initial state. Other systems can not be restarted at all. In
comparison to systems based on the IEC 61131-3, the fractional
state of the IEC 61499 facilitates surgical interventions where
it is needed, allowing exceptionally fast adaptation of large
applications. The possibility of dynamic adaptation shifts the
focus towards the earlier phases of the MAPE-K model, most
importantly Monitoring, Analysis, and Planning. It enables
ICS to be frequently and quickly modified, thus allowing and
demanding faster and more sophisticated detection and decision-
making mechanisms. We believe that dynamic adaptation can
lead to resilient, flexible, and agile ICS.
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