
Real-time Dynamic Reconfiguration for IEC 61499
Laurin Prenzel

Technical University of Munich
Munich, Germany

laurin.prenzel@tum.de

Simon Hofmann
Technical University of Munich

Munich, Germany
simon1.hofmann@tum.de

Sebastian Steinhorst
Technical University of Munich

Munich, Germany
sebastian.steinhorst@tum.de

Abstract—Reconfiguration is an important feature for industrial
automation systems to provide flexibility, adaptability, and
resilience. Dynamic reconfiguration of real-time systems requires
both functional and temporal correctness. A lengthy disruption
of real-time behaviors caused by a reconfiguration can cause
the system to fail. We describe the scheduling problem for a
component-based real-time industrial control system on the basis
of the IEC 61499 and extend this problem to handle disruptions
introduced by a dynamic reconfiguration. We show that the
disruption can be quantified by applying the Priority Ceiling
Protocol (PCP) and calculating the blocking time. Further, we show
that the order of operations within a reconfiguration sequence
can be optimized using the blocking time as objective function.
An evaluation on two example systems shows that our model
allows the application of common schedulability tests for Rate
Monotonic scheduling. In our examples, the optimization reduces
the blocking time of a task during reconfiguration compared
to a heuristic topological ordering by up to 85%. This makes
previously infeasible reconfigurations feasible. The results imply
that timing analysis of dynamic reconfiguration for component-
based real-time systems is attainable, and further research is
necessary to extend it for distributed systems.

Index Terms—Downtimeless System Evolution, Dynamic Soft-
ware Updating, Dynamic Reconfiguration, Timing Analysis

I. INTRODUCTION

Reconfiguration, and in particular dynamic reconfiguration,
are important features for future industrial automation systems
to be able to adapt to unpredictable events, faults, or attacks.
While dynamic reconfiguration incurs lower costs by not
requiring ramp-down and ramp-up phases, it comes with
an additional risk for safety-critical real-time systems, since
the safety and timeliness of the real-time process must be
guaranteed. Yet, it may be the only option for systems that are
uneconomic or impossible to restart. [1]

Recently, the process of dynamic reconfiguration or dynamic
updating has seen attention in the topic of automatically
generating safe update controllers [2], [3]. These controllers
solve the problem of guaranteeing the functional correctness,
which is by no means trivial. Nevertheless, just because a
system can be updated consistently does not imply if the
update can be applied in real-time. It has been shown that
dynamic reconfiguration can cause significant disturbances to
the real-time execution [4]–[6]. Unfortunately, the question if
a dynamic update will succeed in time or not depends on a
myriad of factors, most importantly: The system to be updated,
the update to be applied, and the environment in which it
runs. Particularly strict real-time constraints may not allow for

the overhead introduced by a dynamic reconfiguration. Thus,
evaluating the timeliness of a reconfiguration is a crucial step
before a reconfiguration can be applied.

For industrial automation systems, the IEC 61499 provides
a compelling framework for component-based distributed
control applications [7]. The fractured application state and the
concurrent execution facilitate the implementation of dynamic
reconfiguration, yet this feature is rarely used and there is
only limited tool support. One reason for this is that dynamic
reconfiguration disturbs the real-time execution of critical tasks,
and thus may compromise the safety of the system. While there
are resources on real-time execution of the IEC 61499 [8]–[10],
they do not address the timeliness of dynamic reconfiguration
on a real-time control system. Further, current IEC 61499
execution environments do not fully support these strict real-
time models, and have only limited support for dynamic
reconfiguration.

In this paper, we model the execution of a component-
based architecture, such as the IEC 61499, under preemptive
Rate Monotonic (RM) scheduling with shared resources. This
model allows us to incorporate the delay introduced by a
sequence of reconfiguration operations into the schedulability
condition. We derive an optimization problem which identifies
a schedulable, optimal order of operations if there exists one.
Two examples demonstrate that the optimization algorithm
outperforms a heuristic algorithm by up to 85%. Our results
indicate that dynamic reconfiguration of safety-critical real-
time control systems is feasible and schedulability can be
satisfied in architectures such as the IEC 61499 with strict
timing constraints.

The system model and resulting scheduling problem are
defined in Section II. We define the blocking duration and
show its calculation in Section III. Section IV introduces the
optimization problem of finding an optimal reconfiguration
sequence, and the approach is demonstrated on two example
systems in Section V. We outline related works in Section VI
and Section VII concludes the paper.

II. SYSTEM AND PROBLEM DEFINITION

We first define our system model, emphasize the resulting
scheduling problem that occurs during the reconfiguration,
and argue about the timeliness of the reconfiguration. Our
work builds on top of the IEC 61499 standard for distributed
industrial control systems, but is applicable to other component-



t

τ₁

τ₂
R₂

R₂

R₁

R₁ R₁

R₂

R₂

R₁

Blocked

Preempted

Running

Resource
Access

Priority

τR

Fig. 1. A reconfiguration (τR) introduces additional blocking behavior within
the real-time tasks (τ1, τ2). The blocking duration depends on the performed
reconfiguration and must be assessed before the reconfiguration is applied.

based architectures as well. A version of the original scheduling
problem was defined by [10].

A. System Model

The tasks of the system model are the distinct execution
traces or event-chains within the component-based architecture.
This is in line with previous models [10]. We model these
tasks or traces as directed acyclic graphs (DAGs). The taskset

τ = (τ1, · · · , τn) (1)

consists of n tasks that may occur concurrently. Each task
τi is characterized by (Vi, Ei, Di), where the vertices Vi =
(ei,0, · · · , ei,j) are distinct executions of components, in our
case IEC 61499 function blocks (FBs), the edges Ei are the
precedence constraints between executions, and Di is a deadline
of the task that must be kept. Executions ei,j = (fi,j , c

e
i,j)

are defined by the FB fi,j and a worst case execution time
(WCET) cei,j . FBs are shared resources that can only be used
in one execution e at a time. The WCET cei,j depends on the
algorithms, execution control, state, and the execution platform.
We assume a fixed, known WCET for every execution.

Next, we model the reconfiguration sequence that modifies
the application with a set of reconfiguration operations. The
ordered sequence

S = ⟨o0, · · · , on⟩ (2)

consists of reconfiguration operations oi = (ai, Fi, c
o
i ), where

ai is an action, Fi is a set of affected FBs, and coi is the
WCET of the operation. The actions can interfere with the
execution of a particular FB, e.g. a stop action will suspend all
affected FBs until they receive a corresponding start action. A
suspended FB is blocked from being executed and events must
be preserved. This suspension is an important mechanism to
guarantee the consistency of the reconfiguration [11]. It enables
reconfiguration of an application from source to sink, which
causes all events to be processed according to either the old
version, or the new version, but not a mixture [3].

B. Scheduling Problem

The resulting scheduling problem is to determine whether
all real-time tasks will satisfy their deadlines when the
reconfiguration sequence is applied. By itself, this problem is

not well defined, thus we base our analysis on the following
assumptions:

1) There is only one single-threaded resource that executes
both the tasks and the reconfiguration sequence using
Rate Monotonic (RM) scheduling.

2) The resource can be preempted, but access to a FB is
blocking, i.e. a FB can not be executed by a second task
before the first task has released it.

3) Each real-time task τi has a unique rate Ti identical to
its deadline Di. It can not be triggered more frequently
than its rate.

4) The reconfiguration sequence S is not a real-time task
and has no deadline. Thus, it has the lowest priority
and may be preempted by the real-time tasks. It is only
executed once.

Given that the reconfiguration is not a real-time task, its
impact can nevertheless not be neglected, since it may introduce
blocking behavior that causes a priority inversion, when the
reconfiguration suspends particular FBs. To mitigate the priority
inversion, we utilize the Priority Ceiling Protocol (PCP), which
elevates the priority of a task if it blocks a resource with a higher
priority ceiling. This behavior is depicted in Figure 1, where
the sequence S blocks tasks τ1 and τ2, because it requested
their resources before the tasks were triggered. [12] defines a
schedulability condition for n periodic tasks using PCP and
preemptive RM scheduling:

∀i, 1 ≤ i ≤ n,
Ci

Ti︸︷︷︸
Execution

+
Bi

Ti︸︷︷︸
Blocking

+

i−1∑
j=0

Cj

Tj︸ ︷︷ ︸
Preemption

≤ i(21/i − 1)︸ ︷︷ ︸
Max. Utilization

(3)

This condition assumes a taskset τ = {τ1, · · · , τn}, where
τn has the lowest priority and τ1 has the highest priority.
This is compatible with our system model, which we can
sort in ascending order by their rate Ti = Di to fit the
requirement. The WCET of a task τi with m executions can
then be calculated as

Ci =

m∑
j=1

ci,j . (4)

The condition in Equation 3 consists of three components.
The first component is the contribution of the tasks WCET
to the overall utilization. The second is the contribution of
blocking by other, lower-priority tasks to the utilization. Third
is the cumulative preemption of tasks with higher priority. The
sum of all components must be lower than the maximum
utilization for a taskset of i tasks using preemptive RM
scheduling.

In our model, the blocking time

Bi = B(τi) = BFB(τi) +BR(τi) (5)

has two contributors: BFB(τi) is caused by shared access to
the FBs, and BR(τi) is a result of the concurrent execution of



RINIT RDINITRECONF

R1

St
op

R1

St
ar
t

R2

St
op

R2

St
ar
t

τ₂

τ₁

B₂

B₁

Fig. 2. The reconfiguration sequence S can be split into three phases: RINIT,
RECONF, and RDINIT [13]. The blocking time of a task lasts while a resource
with a higher priority ceiling is suspended.

the reconfiguration sequence S. Together, they determine how
long a task is blocked by a lower-priority task due to the PCP.

Thus, the problem remains of determining the blocking dura-
tions BFB(τi) and BR(τi) for every task given a reconfiguration
sequence. Once these values are known, the schedulability
condition will decide whether or not the system is schedulable
and can thus meet its deadlines. We show how the blocking
durations can be determined in the next section. Afterwards,
we propose an optimization problem to minimize the blocking
time of each task by optimizing the order of reconfiguration
operations.

III. BLOCKING DURATION

The reconfiguration sequence will temporarily suspend FBs
that may be used by other real-time tasks. This is a priority
inversion, which can be solved using the Priority Ceiling
Protocol (PCP). To satisfy the schedulability test in Equation 3,
the blocking time B(τ) has to be determined. The contributors
of B(τ) can be seen in Equation 5.

A. Function Block Blocking Time BFB(τi)

When two tasks share a FB, the higher priority task may
have to wait until the lower priority task has released the FB.
This execution can not be preempted, since this would lead
to an inconsistent state. With F (τi) defined as the set of FBs
used by task τi, this blocking time can be calculated as

BFB(τi) =

n∑
j=i+1

 ∑
fk∈F (τj)∩F (τi)

cj,k

 (6)

that is the sum of the WCET of all executions in tasks with
lower priorities that use an FB that is also used in τi. More
intuitively, it is the maximum duration a task may be blocked
by another task with a lower priority, because they require
access to the same FBs.

B. Reconfiguration Blocking Time BR(τi)

The blocking time BR(τi) depends on the reconfiguration
sequence S. An example is given in Figure 2. Every reconfigu-
ration sequence can be split into three phases: An initialization
phase RINIT, a critical phase RECONF, and a deinitialization

phase RDINIT [13]. The critical RECONF phase begins when
the first shared resource, in this case a FB, is stopped. It ends,
when the last FB is started, and the execution of the real-
time tasks can continue. During the RDINIT phase, leftover
components are cleaned up. Using preemptive scheduling,
RINIT and RDINIT do not disturb the real-time execution,
since they can be prolonged indefinitely.

Intuitively, BR(τi) is the duration of the sequence S during
which there is a suspended FB with a higher priority ceiling
than the priority of task τi. Formally, we first define the priority
function

πFB(f) = max
τi|f∈F (τi)

πτ (τi), (7)

which returns the priority ceiling of a FB f based on the priority
πτ (τi), which can be assigned to each task according to its rate
/ deadline. We use the notation Sp,q = ⟨op, · · · , oq⟩ to represent
the subsequence of S = ⟨o0, · · · , on⟩, where 0 ≤ p ≤ q ≤ n.
We assume the existence of a suspension function sus(S0,q),
which returns the set of FBs that are suspended after the
occurrences of the sequence S0,q . This function must check if
a FB was stopped or added during the sequence but not yet
started. Then, the function

πR(oi) = max
f∈sus(S0,i)

πFB(f) (8)

calculates the priority ceiling of a reconfiguration operation as
the maximum priority ceiling of any FB suspended during the
occurrence of operation oi. πR(oi) decides whether operation
oi can preempt another real-time task. We can now define the
blocking sequence

Sblock(τi) = ⟨oi ∈ S|πR(oi) ≥ πτ (τi)⟩, (9)

which defines the sequence of operations that will block task
τi. From the point of view of τi, this is the disturbance of the
reconfiguration S. Finally, the blocking time of τi,

BR(τi) =
∑

oj∈Sblock(τi)

coj , (10)

is calculated as the sum of the WCET of all blocking operations
from the point of view of task τi.

For a taskset τ = (τ1, · · · , τn), where D1 < Di < Dn and,
thus, τ1 has the highest priority and τn the lowest, the blocking
times will follow the same order

BR(τ1) ≤ BR(τi) ≤ BR(τn). (11)

This is because any subsequence of S that blocks τi must also
block τi+1, since πτ (τi) > πτ (τi+1).

C. Reconfiguration Feasibility

The original schedulability condition as proposed by [12]
was given in Equation 3. By adjusting this condition, we define
the laxity of a task τi as



L(τi) = Tii(2
1/i − 1)︸ ︷︷ ︸

Max. Utilization

−Ti

i−1∑
j=0

Cj

Tj︸ ︷︷ ︸
Preemption

− Ci︸︷︷︸
Execution

− B(τi)︸ ︷︷ ︸
Blocking

. (12)

This laxity is the time that τi could execute longer while still
keeping its deadline. For the system to be schedulable, the
laxity must be positive for all tasks τi ∈ τ :

L(τi)
!
≥ 0. (13)

We have shown how to compute the blocking time B(τi) and
laxity L(τi) given a reconfiguration sequence S. This allows
the application of the schedulability condition in Equation 3,
which indicates whether the system can be scheduled with
preemptive, single-threaded RM scheduling. In the next section,
we demonstrate how the order of reconfiguration operations can
be optimized to minimize the disruption of each task during
the reconfiguration and to find a feasible sequence within the
dependency graph.

IV. OPTIMIZATION PROBLEM

To achieve a consistent reconfiguration, specific precedence
constraints have to be kept. This applies to the order in which
components must be modified. If they are modified in the
wrong order, events may be processed in unpredictable ways.
For this reason, the system should be adapted from event source
to event sink and the precedence constraints can be expressed
in a dependency graph [3].

There are multiple solutions to find a sequence of opera-
tions that satisfies the precedence constraints which enable a
consistent reconfiguration. A heuristic algorithm is presented
in [3]. Each reconfiguration action is assigned a priority, and
feasible operations are selected one-by-one. This approach is
fast and efficient, but it does not take into account any timing
constraints or deadlines and is vulnerable to priority inversion
between operations.

In this paper, we have presented a schedulability condition
to decide the timeliness of a reconfiguration sequence within a
given taskset. We now present an optimization problem to find
an optimal ordering of the reconfiguration operations using the
previously defined schedulability condition. The overall search
space is defined by the dependency graph. In Section V, we
compare the results from our optimization with the heuristic
solution.

A. Constraints

A valid reconfiguration sequence must satisfy both the
functional and temporal correctness criteria. Functionally, the
dependencies must be satisfied. Temporally, the system must
remain schedulable. From Equations 12 and 13 the maximum
feasible blocking time of each task can be computed as

BR,max(τi) = Tii(2
1/i − 1)− Ti

i∑
j=0

Cj

Tj
−BFB(τi). (14)

Thus, the constraint

BR(τi) ≤ BR,max(τi) (15)

enforces that any sequence must satisfy the schedulability
condition in Equation 3.

We optimize the start times toi of each operation oi. For this
purpose, there must be constraints to prevent overlapping exe-
cutions and to enforce the dependencies set by the dependency
graph. Overlapping executions require that

∀i, j ∈ [0, · · · , n], i ̸= j : toi /∈ [toj ; toj + coj ]. (16)

To enforce the dependencies, the starting points of the depen-
dent operations must come after the operation has finished, or
formally

∀i, j ∈ [0, ..., n], oi → oj : toj ≥ toi + coj i, (17)

where oi → oj indicates that oj depends on oi.

B. Minimizing the Blocking Time

Given the previously defined constraints, the task is now
to find a sequence with a minimal overall blocking time, or
a maximal laxity. We chose the objective function as the
aggregated, weighted blocking time

min
S

n∑
i=1

BR(τi)

BR,max(τi)
(18)

where the maximum blocking time of task τi is defined in
Equation 14. We solve the optimization problem using single
objective optimization using the tools of [14]. The constraints
enforce that any solution will satisfy the schedulability con-
dition in Equation 3. The objective function will reduce the
impact of the reconfiguration on the real-time behavior. We
demonstrate the results in a case study in the next section.

V. EVALUATION

We demonstrate the schedulability condition and reconfigura-
tion optimization on two example systems (Figure 3). Example
I consists of 21 FBs and 3 tasks τ1, τ2, and τ3. Example II
consists of 24 FB and 5 tasks, τ1 - τ5. We assume a fixed WCET
of every FB of 50µs. The WCETs, blocking times BFB(τi),
and deadlines are summarized in Table I. The systems are
inspired by real applications. To demonstrate the feasibility
of the schedulability condition and optimization, naming and
timing values are simplified without loss of generality.

We implement a reconfiguration for both examples. In
Example I, four FBs are replaced by new FBs, which requires
one state transformation each, and all tasks are affected. In
Example II, there are two separate locations that are changed.
In task τ1, two FBs are replaced, and in task τ4, three FBs are
replaced by a single new FB. We generate dependency graphs
that limit the feasible orderings of the necessary reconfiguration
operations while guaranteeing consistency according to [3]. For
instance, the reconfiguration is performed from event source
to event sink, pushing out events following the old execution.



1.1
τ₁

τ₂

τ₃

1.2 1.3 1.4 1.5 1.6

3.7

2.1 2.2 2.3 2.4 2.5 2.6 2.7

3.1 3.2 3.3 3.4 3.5 3.6

2.8

(a) Example I before Reconfiguration

τ₁

τ₂

τ₃

1.1 1.2 1.3 1.4 1.5 1.6

3.7

2.1 2.2 2.3 2.4 2.5 2.6 2.7

3.1 3.2 3.3 3.4 3.5 3.6

2.8

(b) Example I after Reconfiguration

τ₁

τ₂

τ₃

τ₄

τ₅

1.1 1.2 1.3

4.1 4.2 4.3 4.4 4.5 4.6

5.1 5.2 5.3 5.4 5.5 5.6 5.7

2.1 2.2 2.3 2.4

3.1 3.2 3.3 3.4

(c) Example II before Reconfiguration

τ₁

τ₂

τ₃

τ₄

τ₅

1.1 1.2 1.3

4.1 4.2 4.3 4.6

5.1 5.2 5.3 5.4 5.5 5.6 5.7

2.1 2.2 2.3 2.4

3.1 3.2 3.3 3.4

(d) Example II after Reconfiguration

Fig. 3. The connection graph shows that the reconfiguration of Example I requires a change in components / FBs 2.3, 2.4, 2.5, and 2.6. The reconfiguration
from Example II-1 to II-2 modifies components 1.2 and 1.3, while combining 4.3, 4.4 and 4.5 into a new 4.3. Tasks are depicted as colored lines. In Example
II, there is an additional task τ5, which is not reconfigured.

TABLE I
SATISFACTION OF REAL-TIME CONSTRAINTS CAN BE GUARANTEED USING SCHEDULABILITY CONDITIONS, WHERE A LAXITY L(τ) MUST BE POSITIVE. A
RECONFIGURATION MAY LEAD TO A NEGATIVE LAXITY. WHILE A HEURISTIC ORDERING OF RECONFIGURATION OPERATIONS CAN NOT SATISFY REAL-TIME

CONSTRAINTS, OUR PROPOSED OPTIMIZED ALGORITHM CAN.

Tasks Undisrupted Schedulability Heuristic Solution Optimized Solution Improvement

τ D = T Cτ BFB BR(τ) L(τ) = BR,max BR(τ) L(τ) BR(τ) L(τ) %

Example I

τ1 1000 300 100 0 600.00 1280 −680.00 190 410.00 85.16%

τ2 4000 600 100 0 1413.71 1470 −56.29 1240 173.71 15.65%

τ3 5500 350 0 0 1463.70 1470 −6.30 1320 143.70 10.20%

Example II

τ1 1000 250 100 0 650.00 1280 −630.00 480 170.00 62.50%

τ2 2500 200 50 0 1196.07 1340 −143.93 660 536.07 50.75%

τ3 4000 300 50 0 1449.05 1600 −150.95 1300 149.05 18.75%

τ4 5000 350 0 0 1409.14 1660 −250.86 1370 39.14 17.47%

τ5 7000 350 0 0 1529.44 1660 −130.56 1510 19.44 9.04%

WRITE B3*

STOP B8

DEL CON B4-B5

STOP B2

ADD FB B5*

STOP C1

STOP B6

DEL FB B6

START B3*

START A4

ADD CON C4-B5*

ADD CON B6*-B7 START C5

ADD CON B2-B3*

DEL CON B4-A3

START B1

WRITE B6*

ADD FB B3*

STOP A5

START B6*

START A3

ST_TRANS B3

STOP A4

STOP A1

STOP C3

STOP B5

DEL FB B5

ADD FB B6*

START C4

READ B4

START C6

DEL CON B3-B4

START C7

READ B3

ST_TRANS B4

STOP C5

ADD CON B3*-B4*

STOP B1

ST_TRANS B6

START A6

START A2

STOP A3

WRITE B4*

STOP C6

START B7

START B4*

DEL CON B6-B7

READ B6

START B8

START C2

START B2

DEL FB B3

STOP C7

STOP C4

ST_TRANS B5

ADD FB B4*

DEL FB B4

ADD CON B4*-B5*

STOP B3

DEL CON B2-B3

START A5

START C1

STOP A6

DEL CON C4-B5

WRITE B5*

START A1

STOP C2

READ B5

ADD CON B4*-A3

START B5*

ADD CON B5*-B6*

STOP A2

START C3

STOP B7

STOP B4

DEL CON B5-B6

Fig. 4. The dependency graph of Example I limits the feasible orderings that
satisfy the consistency requirements. Higher nodes restrict lower nodes. The
colors indicate the priority of each operation according to the heuristic in [3].

Thus, while the reconfiguration flushes out old events, new
events will follow the new system specification.

The undisrupted systems satisfy the schedulability condition
(Eq. 3, see Table I). The system is not overloaded with work,

which would make reconfiguration infeasible, and it is not
idle either. The laxity in the undisturbed case is equal to the
maximal blocking time of each task that may be caused by the
reconfiguration.

A. Results

As can be seen in Table I, the heuristic ordering of
reconfiguration operations failts to satisfy the schedulability
condition in both examples, since the laxity is negative. In
Example I, the blocking time of the heuristic solution is
significantly larger than the maximum blocking time BR,max.
This indicates that the reconfiguration may lead to one or
multiple missed deadlines. The optimized sequence that was
ordered as presented in the previous section is able to meet
the deadline in both examples.



B. Discussion

The heuristic algorithm does not consider the deadlines of
each task. Thus, it will not favor any task in particular, but try
to start components as soon as possible and stop components as
late as possible. This algorithm can find a decent solution very
quickly, but fails to find the optimal solution. It will generate
a sequence, even if a deadline would be missed. Our proposed
optimization algorithm finds the global minimum and satisfies
all constraints. In our examples, it will seek to disrupt time-
critical tasks less. This can resolve the priority inversion caused
by the heuristic algorithm. If there is no schedulable solution,
it will terminate quickly. In our examples, the optimization
terminates within minutes with the optimal solution, although
a feasible solution can be received earlier.

VI. RELATED WORK

There are several works on real-time execution of the
IEC 61499. Apart from the discussions about suitable execution
semantics (see [15], [16]), [8] proposes a real-time execution
model based on cyclic execution and a first-in-first-out (FIFO)
event dispatcher. The model does not consider blocking, and
while no large extension to the IEC 61499 is necessary, it
still requires the WCET and cycle time to be known. The
model is further extended by [9] and [10], which introduce
the concept of event-chains for the purpose of scheduling. The
topic of blocking is shortly addressed, but the consequences
of blocking reconfiguration sequences is not engaged. Further,
current execution environments for the IEC 61499 have only
rudimentary support for RM or Earliest Deadline First (EDF)
scheduling, and the necessary information (deadlines, rates,
priorities) are not part of the IEC 61499 models.

In this paper, we extend these models to permit schedulability
analysis of dynamic reconfiguration scenarios. The choice
of RM scheduling may reopen discussions about execution
semantics, since it affects the order in which events are
processed. For example, since events are scheduled but data
transmissions are not, a delayed event may deal with other
data than the application developer anticipated. This could be
overcome with good system design.

VII. CONCLUSION

Dynamic Reconfiguration is an important feature to enable
the adaptation of industrial automation systems during their life
cycles. Two of the main concerns are the functional consistency
and the disturbance of the real-time constraints. The disturbance
dictates if a reconfiguration can be applied safely.

In this paper, we model the execution of a component-based
architecture, such as the IEC 61499, as a scheduling problem
that can be solved using preemptive RM scheduling and a
PCP for the access to shared components / FBs. We show how
the maximum blocking time during a reconfiguration can be
calculated, and demonstrate that an optimal reconfiguration
ordering can be found. Two examples indicate that an optimized
sequence can make reconfiguration feasible where a heuristic
solution does not suffice.

Currently, our schedulability condition is only applicable
to single-threaded, preemptive RM scheduling. Extensions to
distributed control systems are necessary and validation on real
applications are needed, although current IEC 61499 runtime
environments do not support preemptive RM scheduling.

Dynamic reconfiguration and general adaptability are indis-
pensable for future industrial control systems. The IEC 61499
and other component-based architectures provide superior
support for these features, yet the real-time behavior must
be deterministic and precisely defined. There is a need for
better behavioral modeling and execution environments with
strict, deterministic real-time execution. By further automating
the development process, current industrial systems could be
elevated to greater resilience, while giving the same safety
guarantees.

REFERENCES

[1] H. Seifzadeh, H. Abolhassani, and M. S. Moshkenani, “A survey of
dynamic software updating,” Journal of Software: Evolution and Process,
vol. 25, no. 5, pp. 535–568, May 2013.

[2] L. Nahabedian, V. Braberman, N. D’Ippolito, S. Honiden, J. Kramer,
K. Tei, and S. Uchitel, “Dynamic update of discrete event controllers,”
IEEE Transactions on Software Engineering, pp. 1220–1240, 2018.

[3] L. Prenzel and S. Steinhorst, “Automated dependency resolution in dy-
namic reconfiguration for IEC 61499,” in Proceedings of the Conference
on Emerging Technologies and Factory Automation. IEEE, 2021.

[4] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt, “Tranquility:
A low disruptive alternative to quiescence for ensuring safe dynamic
updates,” IEEE Transactions on Software Engineering, vol. 33, no. 12,
pp. 856–868, Dec. 2007.

[5] X. Ma, L. Baresi, C. Ghezzi, V. Panzica La Manna, and J. Lu, “Version-
consistent dynamic reconfiguration of component-based distributed
systems,” in ACM SIGSOFT symposium and the European conference
on Foundations of software engineering - SIGSOFT/FSE ’11. ACM
Press, 2011, p. 245.

[6] L. Baresi, C. Ghezzi, X. Ma, and V. P. L. Manna, “Efficient dynamic
updates of distributed components through version consistency,” IEEE
Transactions on Software Engineering, vol. 43, no. 4, pp. 340–358, 2017.

[7] G. Lyu and R. W. Brennan, “Towards IEC 61499-based distributed
intelligent automation: A literature review,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 4, pp. 2295–2306, 2021.

[8] A. Zoitl, G. Grabmair, F. Auinger, and C. Sunder, “Executing real-time
constrained control applications modelled in IEC 61499 with respect
to dynamic reconfiguration,” in International Conference on Industrial
Informatics. IEEE, 2005.

[9] A. Zoitl, R. Smodic, C. Sunder, and G. Grabmair, “Enhanced real-time
execution of modular control software based on IEC 61499,” in IEEE
International Conference on Robotics and Automation. IEEE, May
2006, pp. 327–332.

[10] A. Zoitl, Real-time Execution for IEC 61499. Instrumentation, Systems,
and Automation Society, 2009.

[11] J. Kramer and J. Magee, “The evolving philosophers problem: dynamic
change management,” IEEE Transactions on Software Engineering,
vol. 16, no. 11, pp. 1293–1306, Nov. 1990.

[12] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
an approach to real-time synchronization,” IEEE Transactions on
Computers, vol. 39, no. 9, pp. 1175–1185, Sep. 1990.

[13] C. Sünder, V. Vyatkin, and A. Zoitl, “Formal verification of downtimeless
system evolution in embedded automation controllers,” ACM Transactions
on Embedded Computing Systems, vol. 12, no. 1, pp. 1–17, Jan. 2013.

[14] L. Perron and V. Furnon, “OR-Tools.” Google, 2021.
[15] T. Strasser, A. Zoitl, J. H. Christensen, and C. Sünder, “Design and

execution issues in IEC 61499 distributed automation and control systems,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 41, no. 1, pp.
41–51, 2011.

[16] L. Prenzel, A. Zoitl, and J. Provost, “IEC 61499 runtime environments:
A state of the art comparison,” in International Conference on Computer
Aided Systems Theory. Springer, 2019, pp. 453–460.


