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Abstract—Dynamic reconfiguration is a core contributor to
the flexibility and agility of future industrial control systems.
Verification and validation can provide some confidence in the
success of a reconfiguration, yet unexpected external events or
bugs can always lead to the abortion of the reconfiguration
process. This can threaten the real-time behavior and must be
anticipated. In this paper, we extend existing real-time models of
dynamic reconfiguration to incorporate safe rollback scenarios
that allow a disruption-free reversal of the reconfiguration process,
thus providing fault-tolerance. We introduce the concept of a
point of no return, after which a rollback is no longer feasible.
We demonstrate in two example systems how the ordering of
operations can affect the length of the rollback sequence and
optimize the ordering of operations in two stages to find a sequence
that offers a maximal fault-tolerance, while minimizing the real-
time disruption. The results indicate that while considering
potential failure modes requires additional overhead, it can
provide fault-tolerance that promotes the further application
of dynamic reconfiguration in practical applications. This may
lead to higher agility and resilience in industrial control systems
of the future.

Index Terms—Downtimeless System Evolution, Dynamic Soft-
ware Updating, Dynamic Adaptation, Industrial Automation

I. INTRODUCTION

Dynamic reconfiguration of safety-critical or real-time sys-
tems is a difficult process. Although validation and verification
can and must be applied, there can never be a guarantee that
the reconfiguration will work as expected, especially if there
are external factors and the reconfiguration takes place over a
long(-er) period. Thus, it is important to consider a failure of
the reconfiguration and have a backup plan at hand to recover
to a safe state. In the most rudimentary example, this may
simply lead to an emergency stop of the system. For systems
that can’t be stopped, the recovery may require rolling back
the changes that were applied and returning the system to its
original state. For real-time systems, the rollback must not
violate the real-time constraints.

The IEC 61499, as a domain-specific modeling language for
distributed industrial control system (ICS), supports dynamic
reconfiguration. There have been many works on how to achieve
a kind of downtimeless system evolution [1, 2], and how to
achieve it safely [3, 4]. Yet, it is usually not considered what
to do if things inevitably go wrong. Figure 1 demonstrates this
behavior. If a reconfiguration sequence can bring the system
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Fig. 1. A rollback sequence represents a sequence of operations that reverses
the changes of a reconfiguration sequence. If an error occurs during the
reconfiguration, the rollback can be applied to return the system into a safe
operational state, as long as it happens before the point of no return (PNR).

from a state 1 to a state 2, then a rollback sequence should
bring the system from state 2 back to 1. If somewhere in the
middle a failure occurs, it should be possible to jump from
the reconfiguration sequence to the rollback sequence. The
difficulty appears, when there are real-time constraints that
must be satisfied, and when some operations can not be rolled
back. In some cases, there is a loss of information during
the reconfiguration, e.g. when a component and the contained
state are deleted. In other cases, the change of behavior is
irreversible.

In this paper, we address the problem of finding a suitable
rollback sequence for a given reconfiguration sequence. We
identify the point of no return (PNR) from two angles: The real-
time and the reversibility perspective. Using an optimization
algorithm, we find a reconfiguration and rollback sequence
with the highest potential for rollback, while preserving the
schedulability. In this manner, we can guarantee the timing
constraints even during a failure of the reconfiguration. This
behavior is demonstrated in two case studies.

The remainder of the paper is structured as follows: Section II
introduces the IEC 61499, dynamic reconfiguration, and
the existing works on preserving consistency and real-time



constraints. Section III represents our extension to the existing
theory regarding the invertible operations, the PNR, and how
to optimize the rollback sequence. This work is evaluated in
Section IV, and we conclude in Section V.

II. BACKGROUND

A. IEC 61499

The IEC 61499 was introduced as an extension to the models
of the IEC 61131 for distributed control systems. The control
logic is encapsulated in function blocks (FBs) that can be
easily disseminated without side effects, since there is no global
state. Recently, the IEC 61499 has seen renewed interest in
practice [5] and it has been implemented in various runtime
environments with differing execution semantics [6]. The real-
time execution of the IEC 61499 was addressed in [7], yet
blocking access due to shared resources or reconfiguration
were not considered then.

B. Reconfiguration Control Applications

Dynamic Reconfiguration or downtimeless system evolution
has been previously proposed for the IEC 61499 [1, 2]. This
is facilitated by the event-triggered execution and the fractured
system state that can be exchanged efficiently, without halting
the entire application. The reconfiguration services can be
wrapped inside a reconfiguration control application (RCA)
which modifies the actual control application in real-time. This
process of reconfiguration can be split into five phases: The
upload of the RCA, the initial, uncritical RINIT phase, the
critical RECONF phase, the uncritical RDINIT phase, and the
final cleanup of the RCA [3].

C. Consistent Dynamic Reconfiguration of IEC 61499

Initially, the RCA had to be manually developed and
implemented. This can be rather cumbersome, especially since
the size of the RCA can grow very large even for simple
changes [7]. Further, this leaves the burden of verification on
the developer. There are two concerns that must be met: The
reconfiguration must preserve the consistency of the physical
process and control logic, and the reconfiguration must be
executed in real-time.

When performing a reconfiguration, the continuity of the
control logic must be guaranteed. In particular, this means
that the behavior of the system before, during, and after the
introduction of the reconfiguration must be predictable and as
intended. There are different consistency conditions that can
be used to achieve this, and [4] uses a version of quiescence
[8]. In this approach, FBs are stopped and started in the order
of the event flow, i.e. from event source to event sink. Thus,
the update is flushed through the system as new events are
introduced.

The approach in [4] uses rules to automatically construct
a dependency graph of the reconfiguration operations and the
relevant precedence constraints that must be kept to preserve
the consistency. This dependency graph represents the search
space, from which a sequence of operations can be selected
and an RCA can be constructed.

D. Timely Dynamic Reconfiguration of IEC 61499

From the search space of consistent reconfiguration se-
quences, a sequence must be picked that can satisfy the real-
time requirements of the system. The real-time behavior and
schedulability was investigated in [9]. We shortly summarize
the findings as a basis for our extension to this work. Since
the previous work focused on rate monotonic (RM) scheduling,
we keep this assumption.

1) System Definition: First, we define our system model for
the real-time system under reconfiguration. The taskset

τ = (τ1, · · · , τn) (1)

consists of n concurrent real-time tasks, ordered by their
deadlines / rates D = T . These tasks represent the execution
traces or event chains ([7]) in the system. The ordered sequence

S = ⟨o0, · · · , on⟩ (2)

is the reconfiguration sequence and consists of reconfiguration
operations oi = (ai, Fi, c

o
i ), where ai is an action, Fi is a

set of affected FBs, and coi is the worst case execution time
(WCET) of the operation. This linear sequence is one possible
path through the dependency graph.

2) Blocking Time and Schedulability: We reuse the schedu-
lability condition as defined by [10], and solve it for the laxity

L(τi) = Tii(2
1/i − 1)︸ ︷︷ ︸

Max. Utilization

−Ti

i−1∑
j=0

Cj

Tj︸ ︷︷ ︸
Preemption

− Ci︸︷︷︸
Execution

− B(τi)︸ ︷︷ ︸
Blocking

(3)

as introduced by [9]. The blocking time B(τi) consists of
the shared access to FBs, and the blocking introduced by a
reconfiguration sequence S:

Bi = B(τi) = BFB(τi) +BR(τi). (4)

The calculation of the blocking time BR is described in [9].
Intuitively, this blocking time starts when a FB that can block
the execution of a task is stopped, and ends when all FBs that
can block the task are resumed. To minimize the blocking time,
the order of operations within the sequence can be modified to
delay some stop operations, or start FBs as early as possible.
Ultimately, a reconfiguration sequence must be found with a
blocking time that leads to positive laxities for all tasks as
defined in Equation 3.

E. Rollback Recovery from failed Reconfiguration

The need for recovery methods for (distributed) reconfigu-
rations is well known in literature and practice [11–13]. The
distributed case is particularly error-prone, since distributed
nodes may transition independently into unsafe states where a
reconfiguration must be aborted. A solution to unanticipated
faults and errors in reconfigurations is checkpointing and
rollback in case of a detected error [11]. An important problem
of checkpointing and rollback is the possibility of message
loss, which can not always be tolerated [13].



TABLE I
MOST RECONFIGURATION SERVICES OF THE IEC 61499 HAVE A

CORRESPONDING INVERSE OPERATION. FOR SOME SERVICES, AN
INVERSION IS EITHER NOT NECESSARY (STATELESS), OR NOT POSSIBLE.

IEC 61499-1 Inverse Operation

CREATE FB DELETE FB

CREATE CON DELETE CON

DELETE FB Not invertible
DELETE CON ADD CON

START Not invertible
STOP START

WRITE WRITE

READ No inversion necessary
ST_TRANS No inversion necessary

In the general purpose programming language Erlang, a
rollback of a dynamic reconfiguration (or hot code loading) is
easily implemented and often possible automatically (after the
definition of the required state transformations). The work in
this paper is partially inspired by this feature, since it provides
Erlang with great fault-tolerance. An inspiring formalization of
reversibility of Erlang is provided by [14], which promises even
greater fault-tolerance if there are mechanisms to automatically
control the rollback.

III. METHODS

The generation of a rollback sequence first requires an
analysis of the reversible or invertible operations. Once the
invertible operations have been identified, the point of no
return (PNR) must be found, which represents the point at
which a rollback becomes infeasible. This can be either due
to consistency or timing requirements. Ultimately, a rollback
graph as displayed in Figure 2 is the goal. This graph represents
all feasible reconfiguration and rollback sequences that can be
performed to achieve the highest fault tolerance, i.e. a maximal
number of faults can be tolerated and rolled back.

A. Invertible Operations

The reconfiguration sequence S was defined in Section II-D.
We use the notation Sp,q to denote the subsequence of
sequence S of length n where 0 ≤ p ≤ q ≤ n. For every
operation oi within this sequence, the inverse operation must
be identified. Table I details the inverse operations for some
of the reconfiguration services defined in the IEC 61499. For
some operations, no inversion is necessary, since there is no
active change of state yet. For example, reading the state of a
FB does not cause any modification. For other operations, an
inversion is usually not feasible, unless a checkpoint or backup
was made previously. For example, deleting a FB can lead to
an irreversible loss of state. We assume that these operations
can not be reversed, since they require additional efforts.

The reconfiguration sequence and the inverse operations can
be assembled into a large rollback graph by considering how
the sequential changes can be undone. From this graph, we
can extract individual reconfiguration and rollback sequences

SRB
0,f = ⟨o0, · · · , of , o−1

f , · · · , o−1
0 ⟩, (5)

where of is the operation which failed. The goal is now to
trim the rollback graph, until all reconfiguration and rollback
sequences from this graph are both consistent and satisfy the
real-time requirements.

B. Point of no return

At some point in the reconfiguration, a non-reversible
modification has to be performed. Usually, this is the time
when either the system is resumed and we let go of the control
over the state of the system, or we irreversibly delete something.
The reconfiguration and rollback sequence SRB

0,f can only be
assembled if the failure happened before the PNR. Once the
PNR has been passed, the reconfiguration can not be reversed
and the only options are to either continue the reconfiguration,
or perform an emergency shutdown. There are two reasons
why the PNR must be considered.

1) Non-Invertible Operations: Some operations can not be
reversed. This is relevant for the deletion of FBs (unless there
is a backup), but more importantly due to the consistency
requirements posed in [4]. FBs are stopped and started from
event source to event sink, and the reconfiguration is pushed
through the system as new events arrive. This keeps the FBs
in a consistent state during the reconfiguration. Starting a
FB means that the state is released, and can be modified by
external sources. As a result, once a FB is started, its state
can change in an irreversible manner over which we have no
control. Rolling back the state is no longer possible (unless
explicitly considered). 1

2) Real-time Constraints: Just because a reconfiguration
can be rolled back consistently does not mean that it can be
rolled back in real-time. As seen in [9], the laxity in practical
applications of reconfiguration can be very small. Considering
the worst-case scenario, in which a full sequence of invertible
operations must be reversed, the length of the reconfiguration
and rollback sequence SRB

0,f can be twice as long as the initial
reconfiguration. In practice, unless the laxity allows it, there
must be a PNR after which a rollback can not be performed
without violating the real-time constraints.

An example of a rollback graph that implements all feasible
rollback sequences before the PNR is shown in Figure 2. Any
failure before the PNR will result in a unique reconfiguration
and rollback sequence, and the system can be returned to the
previous state without noticeable interruptions.

C. Optimization

The rollback graph of feasible reconfiguration and rollback
sequences in Figure 2 indicates all possible sequences before
the PNR. In this case, the PNR is caused by the first start
operation. However, there are other operations after the PNR
that could be reversed. We can change the reconfiguration
sequence S in a way that allows for more invertible operations
before the occurrence of the PNR. In this section, we show
a modified optimization problem that maximizes the fault-
tolerance of the reconfiguration.

1Erlang solves this problem elegantly by explicitly providing rollback state
transformations from new to old, which is a manual overhead.
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Fig. 2. The Point of no Return is determined by the first non-invertible operation if high deadlines guarantee timing constraints for each possible rollback
sequence.

1) Rollback Length: The first metric to optimize is the length
of the reconfiguration and rollback sequence. While previous
works ([9]) minimized the blocking time, we maximize the
number of operations within the sequence S0,PNR:

max
S

|S0,PNR|. (6)

Since we have real-time constraints, we must additionally
guarantee the satisfaction of these constraints. Thus, the laxity
of all tasks τi must be positive (see Equation 3):

L(τi)
!
≥ 0. (7)

The objective function in Equation 6 maximizes the fault
tolerance, while the constraint in Equation 7 ensures the
schedulability. As a result, we effectively increase the utilization
to account for potential failures during the reconfiguration.

2) Rollback Length and Blocking Time: Focusing on the
rollback length instead of the blocking time means that we
no longer minimize the disruption of the real-time behaviors.
This can lead to a higher utilization than necessary, since we
may choose an ordering that blocks the execution longer than
necessary. Thus, in practice, it can be desirable to minimize
the blocking time as well.

We can incorporate this by first identifying the maximum
number of operations that can be rolled back in real-time, and
then minimizing the blocking time over all reconfiguration
sequences with this number of operations:

min
S

n∑
i=1

BR(τi)

BR,max(τi)

s.t. L(τi) ≥ 0

|S0,PNR| = max
S

|S0,PNR|

(8)

This two-staged optimization promises to find the reconfig-
uration sequence with the highest number of recoverable
operations, while minimizing the disruption of the real-time
behavior. This works well for small systems, yet fails to find
a solution for more complex systems. In general, the problem

could be solved by multi-objective metaheuristic optimization
as well. A metaheuristic algorithm may not find the global
optimum, yet this is not necessary, as long as the real-time
constraints are satisfied and the level of fault-tolerance is
acceptable.

IV. EVALUATION

A. Example Scenarios

We evaluate our methodology on two example scenarios
that demonstrate the benefits and limitations. The examples,
their reconfigurations, and the concurrent tasks / execution
traces / event chains are displayed in Figure 3. In Example I,
there are three real-time tasks, and we exchange three FBs. In
Example II, there are only two real-time tasks, and we exchange
only a single FB. There are shared FBs in both examples, and
the consistency requirements will demand a suspension of all
real-time tasks in order to keep the state steady during the
reconfigurations.

The reconfiguration sequences for Examples I and II consist
of 53 and 17 operations, respectively. In the next section, we
investigate how many operations can be rolled back before we
encounter a PNR or real-time constraints are violated.

B. Results

The results of the reconfiguration- and rollback sequence
generation are summarized in Table II. In both examples, even
a simple heuristic algorithm that chooses the next operation
in the reconfiguration sequence based on priorities ([4]) can
satisfy the schedulability condition, and even allow a reasonable
number of rollback steps in time, before the PNR happens.

Minimizing the blocking time, on the other hand, as
suggested in [9], usually leads to a smaller number of feasible
rollback operations, i.e. 24 to 11 operations before the PNR in
Example I, and 9 to 8 in Example II. This can be explained
by the idea that to minimize the blocking time, non-invertible
operations are executed earlier. In particular, the blocking time
is defined by the length between the first stop and the last
start operation. Since a start operation is non-invertible (it
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Fig. 3. Two example systems evaluate our methodology. In Example I, there are three concurrent real-time tasks, in which three FB are replaced. In Example II,
one FB is replaced in two concurrent tasks.

TABLE II
WE COMPARE THE TIME WHEN A PNR OCCURS FOR BOTH EXAMPLES USING FOUR DIFFERENT ALGORITHMS THAT SELECT A RECONFIGURATION

SEQUENCE FROM A DEPENDENCY GRAPH. OPTIMIZING THE BLOCKING TIME ALONE LEADS TO A LESS FAULT-TOLERANT RECONFIGURATION.

Heuristic [4] Optimized for Optimized for Optimized for
Tasks Blocking Time (BT) [9] Rollback Length (RBL) BT & RBL

τi D(τi) = Ti Cτ (τi) BFB(τi) L(τi) |S0,PNR| L(τi) |S0,PNR| L(τi) |S0,PNR| L(τi) |S0,PNR|

Example I
τ1 3000 350 50 1550.00 25 2470.00 12 1210.00 40

τ2 5000 400 100 1948.80 25 2698.80 12 1648.80 40 Infeasible

τ3 6000 400 0 1988.58 25 2508.58 12 1668.58 40

Example II
τ1 800 350 50 150.00 9 360 8 90 11 360 11

τ2 2200 400 0 80.04 9 80.04 8 80.04 11 80.04 11

breaks the consistency requirements), this will lead to less
opportunities to rollback.

Optimizing the rollback length will lead to a maximum
number of operations before the PNR. This yields 39 operations
before the PNR for Example I, and 10 for Example II. On the
other hand, the laxity of the tasks is smaller than both previous
solutions. In this case, the PNR is postponed as far as possible.

Finally, it is possible to optimize the blocking time for
all sequences with a maximum number of operations that
can be rolled back. Due to the state-space explosion, we
could only solve this for Example II, yet we can see that this
combination can reach the same laxity as the pure blocking-
time optimization, while achieving 10 operations that can be
rolled back. This result is displayed in Figure 4.

C. Discussion

Selecting a suitable reconfiguration- and rollback sequence
is a compromise. Generally, the search space is defined by the
dependency graph and the real-time constraints. The heuristic
algorithm proposed in [4] is very efficient in exploring the
search space, yet the solution may violate the hard real-time
constraints. Minimizing the blocking time will lead to the
greatest laxity, however this also reduces the opportunities to
rollback, since we execute irreversible operations (start) as
soon as possible. Maximizing the rollback length minimizes

the laxity as a side effect by trying to find a sequence in which
we can fit the largest number of invertible operations before the
PNR. Finally, combining the optimization of the blocking time
and rollback length can be infeasible for complex systems. This
limitation can be resolved by implementing a more efficient or
metaheuristic algorithm that can efficiently explore the large
search space.

These results ignore the problem that not all operations are
equally rollback-worthy. To maximize the fault-tolerance, it
is not only necessary to maximize the number of faults that
can be tolerated, but it’s important to consider the likelihood
and criticality of each fault. We minimize the blocking time in
Figure 4 by rearranging the operations. This reordering does
not necessarily make the system more or less fault-tolerant,
unless we are able to pin a failure risk to each operation.

In Figure 5, we demonstrate how the laxity of the recon-
figuration depends on when we trigger a rollback. In this
case, we have chosen shorter deadlines to reduce the laxity. In
this case, the laxity of task τ1 reaches zero if the rollback is
triggered after 30 operations. A later rollback would only be
possible if the timing constraints are relaxed. For example, it
may be possible to temporarily slow down the operation of
the system in a way that allows the relaxation of the timing
constraints. This would provide additional laxity to maximize
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constraints of the rollback sequence instead of the first non-invertible operation.
The Point of no Return is the first operation with a negative laxity for one of
its tasks if a rollback would be executed.

the fault-tolerance of the reconfiguration.

V. CONCLUSION

Dynamic Reconfiguration can improve the flexibility, agility,
and resilience of ICS. Yet, it also represents a potential source
of errors and bugs, and it may leave the system vulnerable
to unexpected errors. In particular, external events during a
reconfiguration can lead to issues. As a result, checkpointing
or rollback mechanisms have been proposed in research and
can be found in industry.

In this paper, we have analyzed the feasibility of rollback
mechanisms for dynamic reconfiguration with the IEC 61499
standard. We have investigated disturbance of real-time behav-
iors, and proposed an optimization algorithm that can maximize

the number of recoverable operations while preserving real-time
performance.

The results indicate that the consideration of rollback
sequences will require additional laxity in the system to prevent
the violation of real-time constraints. Finding a feasible rollback
sequence can be rather straightforward, the main difficulty is
identifying the PNR, at which a rollback is no longer possible.
This PNR can be either caused by irreversible changes to the
system (such as a loss of state), or due to constraining real-time
behaviors.

In the future, the further implementation of reconfiguration
sequences and the corresponding rollback sequences in RCAs
is an important part to bring this methodology into practice.
This requires work on the implementation of the IEC 61499
reconfiguration services. Improving the performance of these
services, e.g. by merging multiple operations into one, can
reduce the required overhead of dynamic reconfiguration, and
necessary rollback sequences.
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