
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

SEEMQTT: Secure End-to-End MQTT-Based
Communication for Mobile IoT Systems Using

Secret Sharing and Trust Delegation
Mohammad Hamad , Andreas Finkenzeller , Hangmao Liu, Jan Lauinger , IEEE, Member, Vassilis

Prevelakis , IEEE, Member, and Sebastian Steinhorst , IEEE, Senior Member

Abstract—The Publish/Subscribe (Pub/Sub) model offers a
communication scheme that is appropriate for a variety of mobile
Internet of Things (IoT) systems (e.g., autonomous vehicles). In
most of these systems, ensuring the End-to-End (E2E) security
of exchanged information is a critical requirement. However,
the Pub/Sub scheme lacks appropriate mechanisms to ensure
the E2E security, even when state-of-the-art solutions, such as
Transport Layer Security (TLS) or Attribute-Based Encryption
(ABE), were adopted. These solutions either do not offer E2E
security or are infeasible to be adopted in mobile IoT systems
with resource-constrained platforms. In this paper, we propose a
framework, so-called SEEMQTT, to ensure secure E2E Pub/Sub-
based communication for mobile IoT systems. Our solution allows
the publisher to encrypt the published messages and control
which subscribers can decrypt these messages without violating
the decoupling requirement of the Pub/Sub model. Our solution
leverages multiple honest-but-curious KeyStores to store secret
shares generated from a secret key using a secret sharing scheme.
The links between the publisher and every KeyStores are secured
using Identity-Based Encryption (IBE). The publisher uses the
secret key to encrypt published messages. Trust delegation is
used to authorize certain subscribers to access these shares and
consequently decrypt the published messages. We provide an
Arduino-based library that implements our proposed protocol.
Also, we perform an extensive performance evaluation using
real IoT hardware. Experimental results show that adopting our
proposed solution, SEEMQTT, makes E2E security for mobile
IoT systems feasible.

Index Terms—End-to-End Security, Pub/Sub Model, MQTT,
Key Sharing, Trust Delegation.

I. INTRODUCTION

Autonomous vehicles, unmanned aerial vehicles (UAVs),
and smart bicycles are examples of smart mobility solutions
that aim to improve traffic flows, reduce the incidence of
critical situations, improve road usability, encourage trans-
portation means-sharing schemes, and increase the drivers’ and
passengers’ comfort. To achieve these goals, these systems
need to exchange and share vast amounts of information with
different cloud services (e.g., vehicle-to-cloud [1], bicycle-to-
cloud [2], and UAV-to-cloud [3]). The main challenges that

M. Hamad, A. Finkenzeller, H. Liu, J. Lauinger, and S. Steinhorst are with
the Department of Electrical and Computer Engineering, Technical University
of Munich, Munich, 80333 Germany, E-mail: (firstname.lastname@tum.de).

V. Prevelakis is with Institute of Computer and Network Engineering,
Technical University of Braunschweig, Braunschweig, 38106 Germany, E-
mail: (prevelakis@ida.ing.tu-bs.de).

Copyright (c) 2022 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Publishers

Secret Sharing

Encrypt Decrypt

Combining Key

Subscribers

KeyStores

Broker

Trusted
Authority

1

2

3

4

0

5

Fig. 1: A high level system architecture of our SEEMQTT
framework. (1) The publisher generates secret shares from
a key and exchanges these shares with the KeyStores over
an IBE-based secure link. (2) Later, the publisher uses that
key to encrypt published messages. (3) Also, the publisher
defines a security credential that allows subscribers to retrieve
the shares. (4) The subscriber uses the received credentials
((0) including the ones received from the Trusted Authority)
to request the secret shares from the KeyStores. (6) Then,
subscribers combine the shares and get the key to decrypt the
received messages.

such communication faces are the unstable connectivity with
cloud services due to the continuous movement of the nodes,
and the need to exchange privacy-related data securely with
many services owned by different authorities.

The Pub/Sub model (§ II-A) is a communication paradigm
that enables a sender, known as a publisher, to disseminate
messages to multiple receivers, known as subscribers, at once
via a mediator, known as a broker [4]. The Pub/Sub model
provides full decoupling in time, space, and flow between
publishers and subscribers. These characteristics make the
Pub/Sub model an excellent candidate to implement com-
munication between mobile IoT systems and the cloud. One
of the famous protocols that follow the Pub/Sub model is
Message Queue Telemetry Transport (MQTT) (§ II-A2). Many
IoT mobile systems already use MQTT to exchange data
with cloud services [5]–[7]. However, in terms of security,
the Pub/Sub model, in general, and MQTT, in particular, are
susceptible to a wide variety of security threats that affect
confidentiality, integrity, and access control of published data
[8], [9]. Such security vulnerabilities are the main obstacles
when using MQTT in systems that require E2E encryption
between publishers and subscribers.

https://orcid.org/0000-0002-9049-7254
https://orcid.org/0000-0003-3866-3769
https://orcid.org/0000-0002-4917-1850
https://orcid.org/0000-0001-6176-1637
https://orcid.org/0000-0002-4096-2584
mhhit
Typewriter
This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3221857

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

The common way to ensure confidentiality of the transmit-
ted data while using MQTT is by considering the broker as
a trusted component. Then, both the publisher and subscriber
can set up a secure connection with the broker (e.g., by using
TLS [10]). This solution does not ensure the E2E encryption
since the broker still needs to decrypt the message transmitted
by the publisher before encrypting and forwarding it to all
authorized registered subscribers. Trusting the broker puts
the entire system at risk if the broker gets compromised or
behaves maliciously (i.e., by forwarding the messages to unau-
thorized subscribers). Additionally, resource-limited publishers
will suffer from the significant communication overhead of
the TLS handshake [11], especially in the case of short-lived
connections. Another issue is the need for a key management
mechanism to store and verify the certificate of each broker.
This becomes a severe issue if the publisher is a mobile node
(such as a traveling vehicle) that must interact with many
brokers who may belong to various certificate authorities.

ABE [12], [13] was adopted recently by many authors (e.g.,
[14], [15]) to secure the Pub/Sub model. ABE is a type of
public-key encryption (asymmetric) that ensures a fine-grained
access control mechanism to encrypted data based on flexible
access policies. By using ABE, a publisher can encrypt a
message using a key extracted from specific attributes where
only authorized subscribers (who have these properties) can
read the data. However, adopting such a solution comes with
significant overhead, even for mid-power and non-constrained
devices [16], [17]. That makes the adoption of ABE question-
able for devices with limited resources.

Another way to ensure E2E encryption between the publish-
ers and subscribers without violating the decoupling require-
ments is by using an external trusted component to support
the storage and distribution of the symmetric keys [18], [19].
These solutions move the problem from trusting the broker
to trusting another single point of failure. Also, they require
a pre-shared secret between the publisher and the trusted key
storage. Thus, this approach is not applicable for mobile IoT
systems.

A. Requirements

Based on the properties of mobile IoT systems that we
have mentioned above, we identify four requirements that any
proposed secure Pub/Sub or MQTT-based solution must fulfill:

• (R1) No pre-shared secret: the continuous mobility of
the publisher within different domains makes having
pre-shared secret keys with other domain nodes (i.e.,
subscribers or key storage components) impractical.

• (R2) E2E Encryption: the system must ensure confiden-
tiality and integrity of the published data without trusting
the broker.

• (R3) Decoupled authorization: the system must give the
publisher of the data the capability to control which
subscriber is able to read this data (without violating the
decoupling principle).

• (R4) Efficiency: it should be possible to deploy and run
the system using constrained devices similar to these ones
used in the mobile IoT systems.

The existing solutions that we have reviewed do not fulfill
one or more of these requirements (a comprehensive compari-
son of our SEEMQTT framework with existing solutions will
be introduced in § VIII).

B. Contribution

In this work, we propose an innovative framework, so-called
SEEMQTT, that maintains E2E data confidentiality, integrity,
and authorization between the publisher and the subscribers in
MQTT-based communication for mobile IoT systems by inte-
grating and extending cryptographic approaches, specifically
secret key sharing (§ II-B1), IBE (§ II-B2), and trust manage-
ment access control (§ III). As shown in Fig. 1, the publisher
uses a secret sharing scheme to distribute a symmetric key,
which is used to encrypt the published data, among multiple
honest-but-curious1 servers, so-called KeyStores. Then, the
publisher specifies conditions that allow subscribers to retrieve
these secret shares from those KeyStores. Only subscribers
who have sufficient credentials can receive and reconstruct the
key and use it to decrypt the published messages. In order to
exchange the shares securely, the publisher needs to establish
a secure channel with every KeyStore2. IBE is used to support
the establishment of such a secure link.

Our solution does not require any pre-shared secrets be-
tween the publisher and KeyStores. In addition, it ensures
the E2E security of the published messages. Also, it gives
the publisher the ability to control which subscribers are
authorized to read the decrypted message by changing the
key and the initial security policy. Finally, our system was
implemented and evaluated using constrained devices.

The main contributions of this paper are as follows:
• We design a secure lightweight Pub/Sub-based frame-

work that ensures the E2E confidentiality and integrity
of published data and gives the publisher full capability
to control who can decrypt this data. All that is possible
without both the need to trust the broker and sharing any
pre-secrets with the KeyStores (§ V).

• We develop an open-source Arduino library called
SEEMQTT.3 This library implements the proposed solu-
tion and extends the Arduino PubSubClient library which
implements MQTT messaging (§ VI).

• We show the feasibility and applicability of our proposed
protocol by evaluating it using embedded resource plat-
forms. (§ VII).

Parts of this paper have been published in an earlier
conference paper [21]. The critical improvement upon the
previous results is the use of IBE and secret sharing. That
implies changes in many phases of the protocol. In addition,
we provide an Arduino-based library that implements our
proposed protocol. Also, we have performed new experiments
to evaluate the new aspects of the protocol. Finally, we have
performed an intensive comparison with existing solutions.

1The honest-but-curious participant in a protocol is a legitimate participant
that will follow the defined protocol but will attempt to learn all possible
information from legitimately received messages [20].

2It would be more practical to have a group of KeyStores in every domain
that serves specific numbers of publishers and subscribers

3https://github.com/tum-esi/SEEMQTT

https://github.com/tum-esi/SEEMQTT

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

II. BACKGROUND

In this section, we provide an overview of the basic con-
cepts that our proposed solution was built upon. Section II-A
discusses the Pub/Sub model components and MQTT, while
§ II-B introduces the cryptographic background.

A. Publish/Subscribe Model

1) Pub/Sub components: the Pub/Sub model contains three
main participants:

• Publisher (Thing): which is responsible for producing or
collecting data and publishing that data. Usually, devices
with constrained resources in the term of computational
power, energy, and memory are used as publishers. In this
work, we assume that the publisher is a Class 1 to Class
4 constrained device [22].

• Subscriber (Service Provider): which represents the node
that will receive and process the published data. Sub-
scribers can be a thing or a virtual server running in the
cloud, and each one of these servers has certain capa-
bilities that make it valid to process specific published
data. In this work, we did not consider the case of using
a thing as a subscriber.

• Broker: represents the device that receives the subscrip-
tions from subscribers, filters incoming data from the
thing, and forwards it to interested service providers.
Published data can pass through multiple brokers until it
reaches the service provider. The broker usually operates
in an untrusted public network.

The Pub/Sub model allows subscribers to specify their
interest in the published data in different ways. The two
most widely-used subscription schemes are topic-based and
content-based subscriptions. Using topic-based subscription
allows each subscriber to receive all the messages published to
topics he subscribed to. On the other hand, using content-based
subscription allows each subscriber to receive all messages
that have attributes that match the constraints he defined in
advance. In this work, we consider the use of topic-based
subscription schemes only.

2) MQTT: There are many messaging frameworks which
follow the Pub/Sub philosophy. MQTT is one of these frame-
works which was standardized in 2016 [23]. MQTT has many
advantages, such as the fast response and the low bandwidth
usage which make it an ideal communication protocol for
resource-constrained devices. The sequence interaction of the
Pub/Sub model using MQTT contains the following packets:

• CONNECT: each node (publisher and subscriber) needs
to connect to the broker before being able to publish or
receive any messages; therefore, the first packet that a
node must exchange with the broker is the CONNECT
packet. This message is required once over a network
connection.

• CONNACK: whenever the node is connected, the broker
sends an acknowledgment in response to the CONNECT
request received from that node.

• SUBSCRIBE: this packet is sent by a node to the broker
to register its interest in one topic or more. The broker

B
ro

ke
r

CONNECT
CONNECT

CONNACK
CONNACK

SUBSCRIBE(traffic)

PUBLISH(traffic, status)
PUBLISH(traffic, status)

SUBACK

Publisher Subscriber

Fig. 2: MQTT control packets during the communication
between a vehicle (Publisher) that reports the traffic status
to one cloud service (Subscriber). Messages are ordered from
top to bottom. However, they can have different order too due
to MQTT decoupling. 5

sends an acknowledgment (SUBACK) packet to that node
for each subscription request.

• PUBLISH: publisher nodes use this packet to publish
messages into certain topic. The broker uses this packet
also to forward these messages to all nodes which sub-
scribed this topic. Based on the quality of service that
was defined by the publisher, the broker may send an ac-
knowledgment to the publisher confirming the reception
of each published messages.

Fig. 2 shows an example of using all these packets when
a vehicle and one cloud service use the MQTT protocol to
exchange the traffic status. The figure shows how the two
nodes firstly connect to a message broker. Then, the cloud
service subscribes to a topic “traffic.” The vehicle uses
the same topic to publish the current status. Each time the
vehicle publishes a reading, the broker forwards that reading
to the cloud service to analyze that data. In this work, we use
an open source message broker that implements the MQTT
protocol called Eclipse Mosquitto4.

3) MQTT Built-in Security Solutions: One of the main
characteristics of the MQTT-based communication is that the
broker has access to all the published data (this characteristic
is inherited from the Pub/Sub model and can be found in
all protocols that implement this model). From a security
perspective, this design decision demands trusting the broker.
However, trusting such a device is not always possible in
many applications (e.g., vehicle-to-cloud communication [21])
where ensuring end-to-end security between the publisher
and the subscriber is required. A recent study [24] shows
that many systems which used MQTT-based communication
are vulnerable to many attacks. Furthermore, the same study
shows that ad-hoc security solutions that were used to secure
MQTT-based communication were ineffective and insecure.

The MQTT standard [25] recommends the use of TLS
(when the usage is feasible) to set up a secure connection
between the nodes (publishers or subscribers) and the broker
and to ensure the confidentiality of the exchanged messages.
To achieve that, each broker must have a cryptographic
certificate (issued by a trusted authority) that can be used
by the other nodes to authenticate that broker and set up a
session key to secure the connection. Also, MQTT provides
a capability for the system administrator to control which

4https://mosquitto.org/
5The figure and other figures have been designed using icons from Flati-

con.com

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

node can publish and subscribe to a topic by using an access
control list implemented within each broker. The authorization
decision is based on information that the client provides, such
as a user-name or an IP address.

All these solutions are based on the assumption that brokers
are trusted. Also, TLS supports securing one-to-one communi-
cation but it does not support securing one-to-many communi-
cation, which is one of the main principles behind the Pub/Sub
communication model. Furthermore, a TLS-based solution
does not offer E2E security since the broker can still read
all the published messages. The overhead of re-establishing a
TLS-based secure link for short-lived connections is another
issue that limits the use of such a solution. Finally, the
authorization solutions do not give the publisher or its owner
the capability to control who can access their data if the broker
belongs to an administrative domain that is different from the
one of the publisher.

B. Cryptographic Background

1) Secret Sharing Scheme: Secret sharing is a mechanism
that enables a dealer to share a secret s among n shareholders.
The reconstruction of the secret is only possible when a
qualified subset of t shareholders cooperate. Shamir [26]
proposed the first secret sharing scheme over Zp, where p is a
prime number. This scheme is known as (t, n)-threshold secret
sharing scheme. It has two main algorithms: GenShare to
generate n shares of s, denoted as α1, ..., αn, and ComShare
to combine any t valid shares and recover the secret s.

• (α1, . . . , αn)← GenShare(n, t, s): this algorithm takes
as an input n which represents the total number of shares
that will be generated (it is required that n < p), t which
represents the minimum number of shares that can be
used to reconstruct the secret, and the secret s. The algo-
rithm chooses t− 1 random numbers a1, ..., at−1

R←− Zp

and defines the polynomial f , which has the degree t−1
using (1).

f(x) := s+a1 ·x+a2 ·x2+ · · ·+at−1 ·xt−1 mod p (1)

where f(0) = s.
Next, it computes yi = f(xi) for xi = 1, . . . , n and
yi ∈ Zp. Finally, each αi := (xi, yi) should be distributed
to the appropriate shareholders securely.

• s ← ComShare(α1, . . . , αt): this algorithm takes as an
input t valid shares α1, . . . , αt (where αi := (xi, f(xi)))
that belong to t points of the polynomial f of degree t−1.
To calculate the secret s, the function uses the Lagrange
Interpolation Formula to interpolate the t points using (2).

s = f(0) =

t∑
i=1

f(xi)
∏

1≤j≤t,j ̸=i

−xj

xi − xj
mod p (2)

2) Identity Based Encryption: To securely send a message
between a sender and a receiver using traditional public-key
cryptography, the sender needs the receiver’s public key. To
obtain that key, a key distribution mechanism is required. In
addition, the sender needs authentication mechanism to ensure
that the public key belongs to the receiver. Therefore, a trusted

party (which we refer to as Certificate Authority (CA)) is
required to certify the key by binding the key to the receiver’s
identity and creating a so-called digital certificate. Using the
CA’s public key, the sender can verify the receiver’s certificate
before using its public key to initiate any secure link.

In order to simplify this process, IBE [27] was proposed.
The main advantage of IBE is to eliminate the need for storing
and verifying the digital certificates, thus eliminating the need
for a CA. By adopting IBE, any string which identifies a party
(e.g., IP address, email address, etc.) can be used as public
key for that party. Using such an identity as a public key will
simplify the key distribution process too.

It is worth to mention that IBE still requires a trusted
party, called Private Key Generator (PKG), to create public
parameters that can be used by all participants and to extract
a secret key for each participant based on its public identity.
Using the identity (ID) of the receiver with public parameters,
the sender can encrypt a message that only the intended
receiver can decrypt.

The IBE scheme includes four algorithms: Setup,
Extract, Encrypt, and Decrypt. Boneh and Franklin
[28] provide the first practical implementation of this scheme
using pairings (Weil-Pairing) over elliptic curves and finite
fields:

• (MKPKG, params)
R←− Setup(): This algorithm is run

by the PKG to create a master secret key (MKPKG)
and public parameters params. These parameters are
made public for all participants while the MKPKG is
kept secret. To implement that, the algorithm generates a
prime number q, two cycling groups G1 and G2 of order
q, and bilinear map ê : G1×G1 → G2. Then, it chooses
a random generator P ∈ G1, a random number α ∈ Z∗

p

and assign it to the master secret key (MKPKG = α),
a cryptographic hash functions H1 : {0, 1}∗ → G∗

1, a
cryptographic hash functions H2 : G2 → {0, 1}n for
some n. The public system parameters are params =
⟨q,G1,G2, ê, n, P, αP,H1, H2⟩.

• prKID
R←− Extract(MKPKG, ID): This algorithm

is run by the PKG too. it takes as input the master
key (MKPKG), the public parameters (params), and an
ID (ID ∈ {0, 1}∗) to create a private key (prKID)
for that ID. To do so, the algorithm calculates QID =
H1(ID) ∈ G∗

1, and then it sets the private key using
the calculated QID as follows: prKID = αQID where
α is the master secret key (MKPKG). The private key
(prKID) is shared securely with the owner of ID.

• C
R←− Encrypt(M,params, ID): This algorithm is

run by the sender. It takes as input the message to be
encrypted (M), the public parameters (params) and the
ID of the receiver. It returns a ciphertext C. To perform
that, the algorithm calculates QID = H1(ID) ∈ G∗

1.
Then, it selects a random number r ∈ Z∗

p and uses it to
calculate C as follows: C = ⟨rP,M ⊕H2(g

r
ID)⟩ where

gID = ê(QID, αP) ∈ G∗
2. It is important to note that

calculating gID and QID is independent of the message
M . Therefore, these values can be calculated once for
every public key ID [28] (We refer to this as the one

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

time overhead during the encryption algorithm).
• M ← Decrypt(C, prKID): This algorithm is run by

the receiver. It takes as input he ciphertext C = ⟨c1, c2⟩
where c1 = rP and c2 = M ⊕H2(g

r
ID) and the private

decryption key prKID correspond to ID. It returns the
message M as follows: c2 ⊕H2(ê(prKID, c1)) = M ⊕
H2(g

r
ID)⊕H2(ê(prKID, rP)) = M .

The IBE is correct when (3) always holds for any message M ,
given the private key prKID that is generated by algorithm
Extract and the corresponding public key ID.

Decrypt(Encrypt(M,params, ID), prKID) = M (3)

III. DECENTRALIZED TRUST DELEGATION

The need for maintaining the space decoupling between
the publisher and the subscriber makes the publisher’s ability
to control the subscribers’ access to the published messages
a very challenging aim. The standard approach for enabling
such a control is by using a centralized access control scheme,
which is usually implemented on the broker. Managing such
a scheme requires a central authority with very detailed
knowledge of the entire system (i.e., publishers, subscribers,
topics, and access rules). However, this solution is not practical
due to many reasons. The management of such a scheme
in massive IoT systems is an infeasible mission. Moreover,
using such an approach would pose increased security risks,
especially if implemented within untrustworthy platforms such
as the broker.

In regard to access control of published messages, the
optimal solution is by letting each publisher directly control
which subscribers are trusted to access the published data
without the need for knowing their identities (i.e., public
keys, IP addresses, etc.). KeyNote Trust Management [29],
[30] seems very suitable to implement this solution. Trust
Management is used to validate certain actions against a
security policy. The authorization of these actions is based
on the credentials that the requester has more than its actual
identity. Each credential contains information about the entity
granting the authorization (known as Authorizer), information
about the recipient(s) of the authorization (each one known as
Licensee), and the condition under which the Authorizer trusts
the Licensee(s) to perform certain action(s). We will refer to
each credential as CRAuthorizer

Licensee where both the Authorizer’s
and Licensee’s fields contain public keys.

A. Trust Delegation

One of the main characteristics of the KeyNote trust man-
agement is the trust delegation. Each Licensee can play the
Authorizer’s role and delegate the trust that he/she gained by
a credential to other actors (Licensees) with new conditions
(without violating the initial conditions). Fig. 3 shows how
such a property can allow the creation of a trust relationship
between one Authorizer, such as Pub, and a Licensee, such
as Sub1, indirectly via many intermediate Licensees (e.g., TA
and TA1). This property perfectly aligns with the decoupling
needs of the Pub/Sub paradigm since Pub and Sub1 are fully
decoupled and do not require to know each other.

D
ec

ou
pl

ed

Trusted

Unrusted

Pub

TA

TA1 TA2

Sub1 Sub2 Sub3

Authorizer: pkKPub

Licensees: pkKTA

Delegation: 1
Conditions: (Loc==Munich &&

Srv ==route mapping &&
Date == today &&
Time < 14:00) − >trusted ;

Signature: ”.........”

Authorizer: pkKTA

Licensees: pkKTA1

Delegation: 1
Conditions: (Loc==Munich &&

(Srv ==route mapping ∥
Srv ==police)) − > trusted ;

Signature: ”.........”

Authorizer: pkKTA1

Licensees: pkKSub1

Delegation: 0
Conditions: (Loc==Munich &&

Srv ==route mapping) − > trusted ;
Signature: ”.........”

Fig. 3: Trust delegation between a vehicle (Pub) and cloud
services (subscribers) via trusted TAs. The left part shows the
chained credentials that reflect the trust delegation. Extended
from [21].

To clarify how trust delegation can take place, we consider
an example where a vehicle (as a publisher) shares traffic flow
information that a cloud service can use to support dynamic
routing. These published messages could include information
that could be used to trace the vehicle if malicious services
accessed it. Therefore, a car is interested in keeping its data
secret and ensures that only services that analyze the data
for dynamic routing (Srv == route mapping) and are
responsible for the area where the car is traveling, let us say in
the city of Munich, (Loc == Munich) can access this data for
a specific period (e.g., Date == Today && Time < 14:00).
Any other services should not be able to retrieve the published
messages. In such a scenario, maintaining the information of
each route mapping service is not practical. Instead, the vehicle
needs only information about a global Trusted Authority (TA)
(such as the German Federal Ministry of Transport and Digital
Infrastructure) to issue a credential that allows this TA to
access its published data under the aforementioned conditions.
This TA creates another credential CRTA

TA1
which authorizes

another trusted TA1 to access or delegate the access of the data
for certain services and in specific location (TA1 can represent
the Bavarian State Ministry for Housing, Construction and
Transport). Using the delegation capability, TA1 itself is able
to authorize different subscribers to access this information
based on the services they provide. Now, whenever the vehicle
(Pub) issues CRPub

TA , it indirectly authorizes Sub1.
Trust delegation is a double-edged sword. On the one

hand, it enables the indirect trust between the publisher and
the subscribers. On the other hand, it opens the door for
any malicious subscribers to extend the trust maliciously by
delegating the gained trust to other untrustworthy subscribers.
To mitigate that, we have extended the KeyNote policy defi-
nition language to restrict the delegation capability to trusted
parties only by adding a new field called Delegation to the
structure of credentials. The Licensees can delegate the trust
to other Licensees as long as their credentials allow that (i.e.,
Delegation:1). Fig. 3 shows how TA1 is able to delegate the
trust to Sub1 while Sub1 is not allowed to delegate the trust
further (i.e., malicious subscribers will not be able to delegate

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Pub TA TA1

Trusted Path

Requester (Sub1)
E
v
a
lu
a
te

CR
S
ub

1 , puK
S
ub

1 , R
equest, σ

CRpuKPub

puKTA
CRpuKTA

puKTA1
CR

puKTA1

puKSub1

RoT = puKPub

share

secret share

trusted

V erifier (KeyStore)

Fig. 4: The KeyStore evaluates the subscriber’s request, and
authorized it if a trusted path between the RoT and the
subscriber can be found.

the trust to other subscribers since that will be detected during
the evaluation of such newly created credentials).

It is critical to understand the frequency and the order
of issuing such credentials. In our example, Pub can create
a credential for TA every time it wants to change any of
the existing conditions such as moving to a new location
or extending the time of a previous credential. On the other
hand, TA needs to create credentials to other intermediate
trusted authorities (e.g., TA1 and TA2) only once. In the same
manner, TA1 needs to issue a credential for each subscriber
once, too. Each subscriber can use its credential as long as
it is valid (note that each Authorizer can limit the validity
of each credential it creates by adding a validity period to its
condition). Assigning these credentials usually happens during
the system setup and does not need to happen after Pub has
created its credential. As a result, both TA and TA1 do not
need to be online each time Pub publishes data or creates
a new credential. The properties (such as location, service
type, validity, etc.) that can be included in the credential
condition must be shared with every publisher so they can form
their credentials properly. Any new subscriber which would
access the published data needs to communicate with the
appropriate trusted authority to receive a security credential.
The method of how subscribers contact a trusted authority to
get a credential is beyond the paper’s scope.

B. Credential Evaluation

To evaluate a request of one principal asking to access a
particular resource, the verifier needs to determine whether
there exists a chain of trust, from the owner of the resource,
a.k.a. the Root of Trust (RoT), to that principal, granting access
to the requested resource. Also, the principal must satisfy all
the required conditions determined by the RoT to access that
resource. The verifier can be the owner of the resource itself,
or it can be any other component that considers the resource’s
owner as a RoT. In our system, the resource is the part of
the key (secret share) that used by the publisher to encrypt
the published message. The subscribers do not request the
secret shares from the publisher (Pub) directly, but from any
KeyStore in the system. Thus, a KeyStore plays the role of the

verifier. To ensure that KeyStores will not deliver the secret
shares to any subscriber unless it is authorized by the publisher
Pub, each KeyStore considers the Pub as the RoT for every
secret share generated by that Pub.

Each subscriber needs to sign its request and provide a list
of all the credentials that it has. These list of credentials should
authorize the subscriber to retrieve the secret shares from every
KeyStore. We will refer to this list as CRSub1 . To authorize
that request, the KeyStore needs to validate the signature of
the request and find the so-called ”Trusted Path” (see Fig. 4),
which links the requester’s key (i.e., Sub1’s key) with the key
of the RoT . If such a path is found and all the conditions in
all credentials that form that path are satisfied, the KeyStore
authorizes Sub1’s request and shares with it the secret share.
Otherwise, the request will be denied.

C. Trust Delegation Algorithms
We define two main algorithms:
• CRpuKauth

PuKlicn
← GenCredential(puKauth, puKlicn,

Conditions, prKauth): This algorithm is run by the
authorizer. It takes as input the authorizer’s public key
(puKauth), the licensee’s public key (puKlicn), a set of
conditions, and the authorizer’s private key (prKauth) to
create the credential CRpuKauth

PuKlicn
. This credential is signed

using the authorizer’s private key (prKauth).
• {1, 0} ← Evaluate(puKRoT , CRrequester,
puKrequester, Request): This algorithm is run by the
verifier. It takes as input the RoT’s public key (puKRoT),
the list of all credentials that the requester has to sup-
port its request (CRrequester), the requester’s public
key (puKrequester), and a Request. The verifier checks
whether it can find a trusted path that links puKrequester

with puKRoT based on CRrequester. If so, the algorithm
returns 1 (or something similar such as trusted). Other-
wise, it returns 0.

IV. SYSTEM AND THREAT MODELS

A. System Model
Our system contains:
• A Publisher node Pub which has a public key (puKPub)

and a private key (prKPub). Pub can publish messages
on different topics tp1, tp2, . . . , tpZ .

• Multiple Brokers Br1, Br2, . . . , BrB . Each broker can
forward the published messages to the subscribers who
are interested in these messages. Also, it can forward
these messages to neighboring brokers to ensure data
availability. For the sake of simplicity, we will consider
the existence of one broker Br only.

• Subscriber nodes Subj . Each subscriber has one or more
security credentials. Each subscriber can subscribe to
any topics; thus, it receives published messages from
the topics it has subscribed to. We refer to the set of
subscribers who subscribe to a topic tpi as SUBtpi

, as
defined in (4).

SUBtpi
= {Subj |Subj → Br : SUBSCRIBE(tpi)}

(4)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

• A Trusted Authority (TA) which is responsible for issu-
ing credentials to each of providers. TA has a public key
(puKTA) which needs to be known by every component
in the system.

• A trusted node that plays the role of a PKG. It generates
the public parameters that can be used by all publishers
and extracts a secret key for the KeyStore based on its
public identity.

• A set of KeyStores KS = {ks1, ks2, . . . , ksn} where
|KS| = n. Each KeyStore has an identity (e.g., IDks1 ,
IDks2 , etc.), which is used as a public key, and a corre-
sponding private key (e.g., prKIDks1 , prKIDks2 , etc.)
which is extracted and shared by the PKG. In addition,
each KeyStore has a repository to store cryptographic
keys securely, and a Policy Evaluation Module (PEM)
that evaluates the access requests to the stored keys (as
explained in § III-B).

B. Threat Model

In this subsection, we present the threat model linked to the
system model which was described above.

• Trusted TA and PKG: we assume that TA is fully
trusted. TA will handle its private keys well and will
not issue any credential to any subscriber who is not
trustworthy. TA will verify the subscriber’s identity (its
public key) and check that the subscriber meets the
conditions stated in the credential before issuing it a
credential (delegate the trust to it). It is important to
note that even though the subscriber is trustworthy and
legitimate at the time of receiving the credential, it can
turn into a malicious node any time later. Also, we assume
that PKG is trusted, and it will handle its private key
well. We assume that both TA and PKG will not try
to decrypt and share any information about keys and
exchanged messages.

• Honest publishers: we assume that the publisher will not
publish malicious data and will not flood the system with
a large number of messages to disrupt the broker’s func-
tionality (i.e., perform Denial of Service (DoS) attack).
Also, we assume that publishers do not trust each other.
Thus, they do not share the same key to encrypt messages
published on the same topic.

• Honest-but-curious broker: we assume that each broker
will perform all protocols correctly. The broker (or the
attacker who compromises that broker) will attempt to
learn all possible information about the content of pub-
lished messages and the cryptographic keys that were
used to encrypt the messages and the secret shares from
legitimately received messages. In addition, the broker
can alter any of the exchanged messages. Finally, we
assume that the broker will not drop the exchanged
messages to cause a DoS attack.

• Honest-but-curious KeyStores: on the one hand, we as-
sume the KeyStore will be honest and it will follow the
protocol steps and evaluate the subscriber credentials hon-
estly. On the other hand, we assume that every KeyStore
may attempt to learn all possible information about the

content of published messages, the cryptographic keys of
other KeyStores, and the key that the publisher uses to
encrypt the published data from legitimately exchanged
messages. It is critical to know that each KeyStore will
store one share of the key. This share will not be sufficient
alone to decrypt the published messages.

• Malicious subscriber: we suppose the absence of any
mechanism to control or prevent any subscriber from
subscribing to any topic. Therefore, each subscriber will
try to subscribe to all topics in the system and try to
extract contents of published messages on these topics
even without valid credentials. Also, we assume that the
malicious subscribers may try to delegate the trust to
other subscribers (this threat was already discussed in
III-A).

• Colluding components: we assume that malicious sub-
scriber can collude with malicious brokers to try to
get all the transmitted messages. Also, we assume that
compromised KeyStore(s) can collude with each other
and with any subscribers or broker.

• External malicious attacker: we assume the adversary
model from [31] where attackers are able to access,
modify, initiate all the message of the protocol.

The mitigation of these threats is discussed in detail in the
analysis section.

V. SEEMQTT PROTOCOL

Our proposed protocol has five phases namely the setup
phase (§ V-A), symmetric master key distribution (§ V-B),
topic key distribution (§ V-C), encrypted message transmission
(§ V-D), and key retrieval and message decryption (§ V-D). In
the remainder of this section, we explain each phase in more
detail. Fig. 5 shows the exchanged messages during every
phase of the protocol. Also, Table I contains the notations
and symbols used throughout the proposed protocol. We use
Alice&Bob notation [33] to describe our security protocol.

A. Phase 0: Setup Phase

This phase occurs once. Throughout this phase:

• The PKG creates the PKG’s master key MKPKG and
the public parameters params by running the algorithm
Setup. The params will be shared with the broker
which will share them later with every publisher.

PKG : (MKPKG, params) = Setup(1λ)

PKG→ Br : params

• Each one of the KeyStores registers with the PKG to
get a private key prKIDksi derived from its identity
IDksi . The PKG shares this private keys using a secure
channel. Also, each KeyStore subscribes to a predefined
topic, called MK, to receive messages during the next
two phases.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE I: An overview of the notation used in this work.

Notation Description

Pub Publisher node
Subj Subscriber node with the index j
tpi Topic with the index i
Br Broker
PKG Private Key Generator
Ksi KeyStore with index i
KS the group of all KeyStores
puKA Public key of the node A
prKA Private key of the node A
IDA Identity of the node A. This identity is used as a public

key for the IBE encryption
prKIDA Private key of the node A. This key is used as a private

key for the IBE decryption. This key is different from
prKA

symKA−B Symmetric key between nodes A and B
symKtpi A symmetric key used to encrypt all published messages

under the topic tpi
C = E(M,K) Symmetric encryption of a message M using a key K;

the output is a ciphertext C
M = D(C,K) Symmetric decryption of a ciphertext C (C =

E(M,K)) using the key K, the output is the message
M

S(M,K) Sign a message M using a key K. If the key is a
symmetric key, the algorithm S calculates the message
authentication code of the message M and outputs a
tag. If the key is a private key, the algorithm S performs
a digital signature on the message M and outputs a
signature σ

V (M, tag,K) Verify whether the output of S(M,K) is equal to the
tag to return accept. Otherwise, it returns reject. The
type of the key used in this algorithm is determined by
the nature of the key used in S(M,K)

EEtM (M,K) Encrypt-then-MAC (EtM) [32] a message M
using a key K. It is critical to use different
keys for the encryption and MAC operations
(i.e., Kenc,Kmac). EEtM is defined as
follow: EEtM (M, (Kenc,Kmac))) := C

R←−
E(M,Kenc), tag

R←− S(C,Kmac) return (C, tag).
For the sake of simplicity, we state only one key for
both EEtM and DEtM

DEtM (C,K) Verify the integrity of a cipher C and decrypt
it using a key K. DEtM is defined as next:
DEtM ((C, tag), (Kenc,Kmac))) := if
V (C, tag,Kmac) = accept, then output
D(C,Kenc), otherwise output reject. For the
sake of simplicity, we state only C as an input for
DEtM instead of (C, tag).

CR
puKA
puKB

Credential which shows that principle A trusts principle
B to perform one or more operations under certain
condition(s)

H(M) Hashing the message M using a hash function H
nci A non-repeated random number or nonce
A→ B : M Read as A sends a message M to B over an insecure

channel [33]
A

s−→ B : M Read as A sends a message M to B over a secure
channel.

A : X Read as A performs X [34]
∥ Concatenation operation

For all ksi ∈ KS
ksi → PKG : IDksi

PKG : prKIDksi = Extract(MKPKG, IDKsi)

PKG
s−→ ksi : prKIDksi

ksi : SUBSCRIBE(MK)

• Each subscriber (Subj) needs to have particular creden-

Br ks1Pub Sub1PKG

params
IDks1

prKIDks1

IDksn

prKIDksn

SUBSCRIBE(”MK”)

SUBSCRIBE(”tpi”)

IDks1

IDksn

P
h
a
se

0

ck1||puKPub

ckn||puKPub

ck1||puKPub

ckn||puKPub

ACK1

ACKn

ACK1

ACKn

P
h
a
se

I

hp||cs1||tag1

hp||csn||tagn
hp||cs1||tag1

hp||csn||tagn

CRpuKPub

puKTA

CRpuKPub

puKTA

CRpuKPub

puKTA

P
h
a
se

I
I

EEtM (M, symKtpi) EEtM (M, symKtpi)

EEtM (M, symKtpi
)

P
h
a
se

I
I
I

E(α1, puKSub1)

Request||nr||σr||hp||puKSub1 ||CRSub1

Request||nr||σr||hp||puKSub1 ||CRSub1

E(αt, puKSub1)

P
h
a
se

I
V

Fig. 5: The five phases of the SEEMQTT protocol.

tials from TA to authorize it to obtain the key that was
used to encrypt the published messages for a certain
topic. Also, each Subj registers its interest to receive
messages on the particular topic, let us say tpi (The Pub
will use this topic to publish messages), by sending a
SUBSCRIBE message to the broker.

Subj → Br : SUBSCRIBE(tpi)

B. Phase I: Symmetric Master Key Distribution

This phase contains two sub-phases: Phase II-1 that is used
to setup a symmetric master key between the publisher and
every KeyStore (symKPub−ksi), and Phase II-2 that is used
to receive an acknowledgment from every KeyStore to confirm
the receipt of a master key.

1) Phase I-1: Whenever Pub receives the information
about the existing KS , it creates a set of symmetric
master keys (symKPub−ks1 , . . . , symKPub−ksn) using al-
gorithm GenKey() and stores these keys into a tuple
⟨IDksi , symKPub−ksi , nci, expT ⟩. Each tuple includes a
KeyStore ID (IDksi), a symmetric master key between the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

publisher and that KeyStore (symKPub−ksi), a nonce nci,
and an expiration time expT of the symmetric master key. The
Pub must renew that symmetric master key before reaching its
expT . To share that key with the relevant KeyStore, Pub uses
IDksi to encrypt (using IBE) the generated symmetric master
key together with the nonce nci and the hash value of its
public key (hp = H(puKPub)). Then, the Pub concatenates
the computed cipher message (cki) with its public key and
publishes them to the broker.

For all ksi ∈ KS
Pub : symKPub−ksi = GenKey()

Pub : m = symKPub−ksi ||nci||hp

Pub : cki = Encrypt(m, params, IDksi)

Pub→ Br : cki || puKPub

2) Phase I-2: Upon receiving these messages, the bro-
ker forwards them to KeyStores. Each ksi decrypts
the received message using its private key prKIDksi

and extracts the symmetric master key, nonce, and
the hash value of publisher’s public key. Each Key-
Store uses a tuple to store these information. Each tu-
ple ⟨H(puKPub), RoT, symKPub−ksi , tpi, symKtpi

⟩ con-
tains the hash value of the publisher’s public key H(puKPub)
which serves as an identity for that publisher, the root of
trust which will be filled by the publisher’s public key, the
symmetric master key, a topic identifier (tpi), and a topic key
to secure messages published on this topic (symKtpi

). Note
that each publisher can have multiple message keys, one for
each topic. However, it needs only one symmetric master key
with each KeyStore to exchange all these topic keys. In this
stage of the protocol, both tpi and symKtpi

are empty:

For all ksi ∈ KS
Br → ksi : cki || pubKPub

ksi : ⟨symKPub−ksi , nc
′
i, hp⟩ = Decrypt(cki, prKIDksi)

After decrypting the received message, each ksi checks
whether hp is equal to H(pubKPub). Then, each ksi needs
to acknowledge the Phase I-1’s success to Pub and confirm
that the symmetric master key was linked to Pub’s public
key. To do so, each ksi forms a message by XORing the
received nonce nc′i with the hash value of puKPub. This
message is encrypted using the received symKPub−ksi and
sent to Br, which forwards it to Pub who is waiting for this
acknowledgment.

For all ksi ∈ KS
ksi : ACKi = E(nc′i ⊕ hp, symKPub−ksi)

ksi → Br : ACKi

Br → Pub : ACKi

Pub uses the master symmetric key linked to each KeyStore to
decrypt the received acknowledgments ACKi. Then, it verifies
whether the received nonce is equal to the one that was shared
with the KeyStore during Phase I by using the Compare
algorithm ({1, 0} ← Compare(a, b, c): it compares whether
a⊕ b == c to return 1. Otherwise, it returns 0):

Pub :

n∑
i=1

Compare(D(ACKi, symKPub−ksi), hp, nci)
?
= n

This phase ends whenever Pub has received acknowledg-
ments from every KeyStore and has verified received nonces
successfully. Otherwise, the protocol tries to share a new set
of master symmetric keys with KeyStores.

C. Phase II: Topic Key Distribution

After setting up a symmetric master key between Pub and
every ksi, Pub use the algorithm GenKey to generate a
topic key symKtpi . This key is used to encrypt all published
messages under the topic tpi. The Pub adopts secret sharing
scheme (see subsection II-B1) to share this key with the
n KeyStores. To achieve that, the Pub uses the algorithm
GenShare() to create n shares (α1, . . . , αn) by specifying
the minimum number of shares t that needs to be used to
recover the topic key (symKtpi).

Pub : symKtpi = GenKey()

Pub : (α1, . . . , αn) = GenShare(n, t, symKtpi)

For each one of the n KeyStores, Pub uses the
symKPub−ksi to encrypt and authenticate a message that
contains one share and the hash value of topic tpi. The H(tpi)
will be used as an identifier for that topic.6 Then, Pub shares
the hash value of its public key hp, the encrypted message csi,
and the authentication code tagi with the relevant KeyStores
via the broker.

For all ksi ∈ KS
Pub : ⟨csi, tagi⟩ = EEtM (αi||H(tpi), symKPub−ksi)

Pub→ Br : hp||csi||tagi
To control who is able to get this key, Pub uses the algo-

rithm GenCredential to creates a credential CRpuKPub

puKTA
.

This credential authorizes a TA (directly) and all subscribers
that fulfill certain conditions Conds and are trusted by TA
(indirectly) to retrieve n shares from the n KeyStores. Conds
specify the topic identity H(tpi) and for how long this
credential will stay valid.

Pub : GenCredential(puKPub, puKTA, Conds, prKPub)

Pub→ Br : CRpuKPub

puKTA

The broker forwards the received messages from Pub to
every KeyStore. Using the received hp, each ksi can determine
which symmetric master key should be used to verify and
decrypt the message. If the verification succeeds, the ksi will
check the existence of the H(tpi) to update the topic key,
otherwise, it will create a new tuple to store the share in the
field of the topic key.

6Using the same key for encryption and MAC is not secure. Therefore, it
is very critical to ensure the use of two different keys (one for the encryption
and the other for the MAC) that are derived from the symmetric master key.
In our implementation, we use AES with the GCM mode to ensure that.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

For all ksi ∈ KS
Br → ksi : hp||csi||tagi
ksi : αi||H(tpi) = DEtM (csi, tagi, symKPub−ksi)

Also, the broker Br forwards the credential CRpuKPub

puKTA
to

every member of SUBtpi
.

For all Subj ∈ SUBtpi

Br → Subj : CRpuKPub

puKTA

D. Phase III: Encrypted Message Transmission

The publisher aims to guarantee the confidentiality and in-
tegrity of published messages. Therefore, Pub uses symKtpi

to encrypt and authenticate every published message under the
tpi.

Pub→ Br : EEtM (msg, symKtpi
)

The broker Br forwards the messages to every member of
SUBtpi .

For all Subj ∈ SUBtpi

Br → Subj : EEtM (msg, symKtpi
)

E. Phase IV: Key Retrieval and Message Decryption

After receiving the encrypted messages and credential, every
subscriber needs to decrypt these messages. To do so, each
Subj needs to communicate with the n KeyStores to retrieve at
least t secret shares. Then, each subscriber uses the algorithm
ComShare to reconstruct the symKtpi using those t collected
shares. It is important to note that this communication does
not need to go through the Br.

To get the shares, each Subj uses its private key prKSubj to
sign a Request with a nonce ncr (the nonce is used to prevent
replay attacks) as follows: σr = S(Request||ncr, prKSubj).
Then, it sends the next values to t KeyStores (at least):
Request, the signature σr, its public key puKSubi , the
H(puKPub) (the puKPub can be extracted from the received
credential in Phase II), a list of all credentials CRSubi

(m = |CRSubi |) that prove that TA trusts the Subj and
it fulfills all conditions stated in CRpuKPub

puKTA
(note that the

received credential will be included in the credential list, i.e.,
CRpuKPub

puKTA
∈ CRSubi).

For t ksi ∈ KS
Subj → ksi : Request||ncr||σr||hp||puKSubj ||CRSubi

Each ksi verifies the signature of Request||ncr. Then, it uses
the algorithm Evaluate which tries to find a path of trust
that links the pubKSubj with the pubKPub based on the
credentials provided by Subj . Note that, the KeyStore uses
the received H(puKPub) to determine the RoT’s public key.
If the algorithm finds such a trusted path, the ksi encrypts the
secret share αi using puKSubi and sends it back to Subi:7

7There is no need for encrypting the share if the communication between
the ksi and Subj goes over a secure link.

For t ksi ∈ KS

ksi : V (Request||ncr, σr, puKSubj)
?
= accept

ksi : Evaluate(puKPub, CRSubi , puKSubj , Request)
?
= 1

ksi → Subj : E(αi, puKSubj)

The Subj decrypts the received message using its private key
and extracts αi.

For (t) ksi ∈ KS
ksi : αi = D(E(αi, puKSubj), prKSubj)

Then, it uses the algorithm ComShare to reconstruct the
symKtpi

using the received t shares. Later, it uses this key
to decrypt the message and check its integrity.

Subj : symKtpi
= ComShare(α1, . . . αt︸ ︷︷ ︸

t≤n

)

Subj : msg = DEtM (EEtM (msg, symKtpi), symKtpi)

F. Remarks

• Pre-shared Secret: One of the main advantages of our
proposed protocol is that publishers do not need to be reg-
istered with any of the trusted parties that we have (i.e.,
TA or PKG). All the information that publishers need
can be collected from the brokers without the need to
contact these parties directly. These information includes
puKTA, params, and the KeyStores’ IDs. One way to
avoid exchanging the KeyStores’ IDs with every publisher
is by letting these identities to follow an uniform naming
convention (e.g., “city-name KeyStore id”). In this case,
the publisher needs only to know the number of the
existing KeyStores.

• Malicious Publishers: We assume only honest publishers
will participate in our system. As a result, every publisher
can participate in the protocol. It is possible to adapt the
protocol so that only authorized publishers are allowed to
participate. By implementing the trust delegation mecha-
nism, only authorized publishers can store shares in the
KeyStores. This would require every publisher to have a
credential from a TA that is trusted by the KeyStores
directly or indirectly. During Phase I-1, the publisher
sends all credentials to the KeyStores. These credentials
will be evaluated by each KeyStore to verify that the
publisher is legitimate and capable of storing shares.

• Renewal of the Symmetric Master Keys: One of the
challenges that any protocol faces is deciding when to
change or renew a symmetric key that was used for a
certain amount of time. Changing the symmetric keys is
necessary since the security of a key is weakened if a
key is used over an extended period. In order to renew
a symmetric master key between the publisher and the
KeyStores, we could simply run the initial key exchange
mechanism again using IBE. However, this would pose
a high computational effort. Instead, our system uses the
previous symmetric master key to encrypt a new one.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE II: The frequency of protocol’s phases.

Phase Phase 0 Phase I Phase II Phase III Phase IV

Frequency Once Every P1 or adding new ksi Every P2 Per message Every P2 and Per message

• Adding or Removing KeyStores: adding new KeyStores
requires setting up IBE public and private keys for these
KeyStores. On the other hand, adding KeyStores after
performing Phase II (topic key distribution) does not
require re-performing that phase. Subscribers can still
decrypt the encrypted messages using the topic key that
was already shared with the existing KeyStores. Deleting
x KeyStores after that phase requires re-transmitting a
new topic key only if x > n− t.

• Phase Frequencies: to understand the introduced overhead
by the protocol, it is critical to know how frequently
each of the protocol’s phases is performed. As shown in
TABLE I, Phase 0 occurs once. As we have discussed
before, symKPub−ksi must not be used for a long time,
therefore, Phase I must be performed each P1 period
of time. Also, this phase is performed after the addition
of a new KeyStore. Similar to symKPub−ksi , symKtpi

must not be used for a long time. Therefore, Phase II
should also be performed periodically (i.e., every P2

period). The Phase III occurs every time the publisher
publishes a message. The decryption of the message in
Phase IV is performed every time an encrypted message
is received, while getting the shares from the KeyStores
and constructing the symKtpi

occur every P2 period.
• Trust Revocation: The KeyNote trust management na-

tively supports time-based revocation [35]. The Autho-
rizer can determine the validity of the credentials by
encoding the validity period in the ”Conditions” field of
the credential. After that date, the credential will not be
valid anymore (i.e., revoked). In addition, revocation can
also be handled independently from the KeyNote trust
management system by adopting other schemas such as
Certificate Revocation Lists (CRLs). Before evaluating
the credentials, every KeyStore checks the CRLs, which
contain the revoked Authorizers, to ensure the validity
of the requester credentials. Implementing the revocation
using CRLs is beyond the scope of the current work.

VI. IMPLEMENTATION

We have implemented an open-source Arduino platform-
specific C++ library, called SEEMQTT8, that implements the
publisher in the SEEMQTT protocol. The library is derived
from the base class PubSubClient, which provides the basic
MQTT client functionality9. To implement the IBE, we have
used the implementation of the Boneh and Franklin IBE (BF-
IBE) algorithm [28]. We chose the Pairing-Based Cryptogra-
phy (PBC) library to accomplish the underlying pairing oper-
ations in BF-IBE scheme10. The PBC library itself is built on

8https://github.com/tum-esi/SEEMQTT
9https://www.arduino.cc/reference/en/libraries/pubsubclient/
10https://crypto.stanford.edu/pbc/

B
ro

ke
r

k
s 1k
s 1k
s 1

Pu
b

S
u
b 1

SecConnect

SecSessionKeyUpdate

SecPublish

CONNECT

CONNECT

SUBSCRIBE(MK/#)

SUBSCRIBE(topic/#)

SUBSCRIBE(MK/Pub/ack/#)

PUBLISH(MK/Pub/value/ks1, ck1)
PUBLISH(MK/Pub/value/ks1, ck1)

PUBLISH(MK/Pub/ack/ks1, ACK1)PUBLISH(MK/Pub/ack/ks1, ACK1)

PUBLISH(MK/Pub/sk/ks1, hp||cs1||tag1)
PUBLISH(MK/Pub/sk/ks1, hp||cs1||tag1)

SUBSCRIBE(topic,msg)
SUBSCRIBE(topic,msg)

Fig. 6: The three main calls of SEEMQTT library.

the Multiple Precision Arithmetic (GMP) library11. Both PBC
and GMP libraries were cross-compiled on a Linux machine
for the Arduino ESP32 board and were provided as static
libraries (i.e., libpbcesp32.a and libgmpesp32.a). we have
implemented our own Arduino-based library that implements
Shamir’s secret sharing scheme based on an existing Linux-
based implementation [36]. Other cryptographic operations
were implemented using the Mbed TLS library12.

It is important to note that our implementation does not
require any changes to the broker implementation, making it
compatible with other brokers’ implementations. Fig. 6 shows
the main three functions that the SEEMQTT library provides:

• SecConnect: This function is used by the publisher to
connect to the broker and set up the symmetric master
key with every KeyStore. This function encapsulates the
CONNECT control packet to connect with the broker, and
the Encrypt algorithm to encrypt a master key for
every KeyStore. To exchange the encrypted symmetric
master key with all Keystrokes, the publisher publishes
it under the predefined topic “MK/Pub/value/IDksi”.
Remember that each KeyStore has already subscribed to
that topic. To handle the acknowledgments, the publisher
subscribes to another predefined topic “MK/Pub/ack/#”.
Based on the KeyStore’s ID, the publisher can validate
the acknowledgment.

• SecSessionKeyUpdate: this function is used to set
up a topic key (if it was called for the first time) or update
an existing topic key. The function uses the algorithm
GenShare to create the secret shares from the generated
topic key. The publisher uses a third predefined topic,
“MK/Pub/sk/IDksi”, to exchange these shares with the
KeyStores.

• SecPublish: the publisher uses this function to send
authenticated encrypted messages. The AES cipher with

11https://gmplib.org/
12https://tls.mbed.org

https://github.com/tum-esi/SEEMQTT
https://www.arduino.cc/reference/en/libraries/pubsubclient/
https://crypto.stanford.edu/pbc/
https://gmplib.org/
https://tls.mbed.org

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

KeyStores

Publisher
Broker

Subscriber

Router

Fig. 7: The testbed that was used to evaluate SEEMQTT.

Galois/Counter Mode (AES-GCM) [37] is used to encrypt
the shares before publishing them to the broker.

We have implemented the KeyStore functionality using
the C programming languages and based it on the Eclipse
Mosquitto client library and the KeyNote trust management
library. All cryptographic operations were implemented using
the OpenSSL library.

VII. EXPERIMENTS AND ANALYSIS

In this section, we present our testbed that was used to carry
out our experiments (see subsection VII-A). Also, we present
a comprehensive performance analysis that covers all phases
of the proposed protocol (see subsection VII-B). Finally, we
provide an informal security analysis of our proposed protocol
(see subsection VII-C).

A. Testbed

We have deployed and evaluated our implementation using
the testbed that is shown in Fig. 7. The testbed includes
one Espressif ESP32-WROOM-32D development board that
is used as a publisher. The goal behind using this board is to
show that our proposed system is practical for resource con-
strained embedded platforms. The ESP32 board is equipped
with an Xtensa dual-core 32-bit LX6 microprocessor with
240MHz clock frequency and integrated Wi-Fi functionalities.
Additionally, the testbed includes seven Raspberry Pi 4 Model
B (RPI4). Each RPI4 includes a Broadcom BCM2711 which is
an SoC based on a 64-bit ARM-Cortex A72 quad core running
at 1.5GHz and runs 32-bit Raspberry Pi OS.13 Five of these
Raspberry Pis were used as KeyStores, one was used as a
broker, and the last one was used as a subscriber. All these
devices were interconnected wirelessly using a TP-Link TL-
WR820N router. The network was isolated from the Internet

B. Performance Analysis

The evaluation aims to measure the overhead of us-
ing Shamir’s secret sharing scheme and IBE on the pub-
lisher.Furthermore, it aims to measure the overhead of every
phase of the proposed protocol.

1) Shamir’s Secret Sharing Scheme: We started the eval-
uation by looking at the overhead of using Shamir’s secret
sharing scheme to understand the effect of choosing the
number of KeyStores n and the threshold t. Since the publisher
performs only the GenShare algorithm during our proposed
protocol, we focused only on the evaluation of that algorithm
here (Note that evaluating the ComShare algorithm using the
ESP32 board is presented in the appendix A.). To evaluate
the scheme, we measured the consumed time to perform the
GenShare algorithm in order to share the topic key symKtpi

(the size of this key is 16B) using different combinations of n
and t. The first test was to evaluate the effect of using different
number of KeyStores (i.e., n) while using the same value of
t. To conduct that, we measured the consumed time when
n = 2, 3, . . . , 15 and t = 2. The result of this test is presented
in Fig. 8a. The result shows that the consumed time increases
slightly with the increase of n. In order to study the effect of
increasing the value t for the same value of n, we run another
test by using n = 15 and measured the time for every value of
t between 2 and 15. The result of this measurement is shown
in Fig. 8b. The result shows that the consumed time increases
also by the increase of t.

Besides its effects on the consumed time of generating and
combining the secret, the value of t significantly impacts the
system’s security and availability. Although choosing a small
value of t (compared to n) introduces a small overhead, it
weakens the system security: if t is relatively small, an attacker
needs to compromise only a small number of KeyStores (at
most t out of n) to re-combine the secret. On the other hand,
choosing a large value of t, where n is large, makes restoring
the key maliciously more difficult since the attacker needs
to compromise a high number of KeyStores (better security).
However, it risks the system’s availability since combining the
key requires the availability of a large number of KeyStores
(at least t out of n). Furthermore, we have seen that using a
large value of t introduces more overhead. Since using a large
and small value of t is not perfect solution, it seems that using
a median value of t (compared to n) could be a good option.
In order to evaluate that, we measured consumed time of the
GenShare algorithm when n = 2, . . . , 15 while t = n (high
security, low availability), t = ⌊n/2⌋+ 1 (the median value),
and t = 2 (low security, high availability). The results obtained
from this test are presented in Fig. 9. The results shows that
for small value of n (i.e., n ≤ 5), the difference between
the consumed time is negligible, while it is not for the larger
values of n. Fig. 9 shows that different combinations of n and t
can consume the same time. For example, the figure shows that
the consumed time to perform the GenShare algorithm using
n = 11 and t = 6 is almost incidental to the cases of using
n = 15 and t = 2 (High availability) and n = 9 and t = 9
(high security). It is important to note that we performed the
measurements using n ≤ 15 to reflect a realistic and practical
scenario. However, for the sake of completeness, we evaluated
the algorithm using larger values of n and presented the results
in Fig. 10. The results show that even for larger values of n,
the consumed time is still in the range of milliseconds.

13https://www.raspberrypi.com/software/operating-systems/

https://www.raspberrypi.com/software/operating-systems/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

2 3 4 5 6 7 8 9 10 11 12 13 14 15
1

2

3

4

5

n

C
on

su
m

ed
Ti

m
e

(m
s)

(a) t = 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15
1

2

3

4

5

t

C
on

su
m

ed
Ti

m
e

(m
s)

(b) n = 15

Fig. 8: The consumed time during the executing of GenShare using a secret of 16B and different values of n and t.

2 3 4 5 6 7 8 9 101112131415

2

4

(9, 9) ≈ (6, 11) ≈ (2, 15)

n

C
on

su
m

ed
Ti

m
e

(m
s)

t = 2

t = ⌊n/2⌋+ 1
t = n

Fig. 9: Comparing the consumed time during the execution of
GenShare using a 16B key using Shamir’s secret sharing
when n = 2, . . . , 15 and t = 2, t = ⌊n/2⌋+ 1, n.

2) IBE vs TLS: Having a secure link between the publisher
and every KeyStore using TLS can be argued as a better option
than using IBE. The goal of this subsection is to compare
both options based on the consumed time, the size of stored
data, and the size of exchanged messages during the process
of setting a secure link between the Pub and KeyStore using
IBE and TLS.

For TLS, we measured the required time to set up
a secure link using TLS v1.2 with the cipher suite
TLS ECDHE RSA AES 256 GCM SHA384. During
the handshake protocol, the publisher needs to verify the
KeyStore certificate and the exchanged parameters to proceed
with the setup of the secure session using Ephemeral Elliptic
Curve Diffie-Hellman (ECDHE) key exchange protocol [38].
Regarding IBE, we measure the required time for the publisher
Pub to calculate the gIDks1

of the KeyStore (see § II-B2), use
that to encrypt the session key, and receive the acknowledg-
ment from the KeyStore (Remember that all the messages go
through the broker in the case of IBE).

Fig. 11 presents the measured time using both schemes.
The results show that setting up the session key using IBE

20 30 40 50 60 70 80 90 100

50

100

150

Algorithm

C
on

su
m

ed
Ti

m
e

(m
s)

Fig. 10: The consumed time during the executing of
GenShare using a secret of 16B using larger values of n
and t = ⌊n/2⌋+ 1.

consumes more time compared to the case of using TLS.
Nevertheless, by looking closely at this time when IBE is
used, we found that almost 70% of the measured time is
resulting from the computation of gIDks1

, while only 30% of
that time is caused by the encryption of the session key and the
communication process with the KeyStore (see the right part
of Fig. 11). Since the calculation of gIDks1

is independent
of the session key encryption, the publisher does not need
to be connected to the KeyStore to perform that operation.
Thus, the needed time for both nodes to be connected is very
short (around 300ms). On the other hand, using TLS requires
that both the publisher and the KeyStore are connected during
the entire duration of the protocol (i.e., around 1038ms).
However, the need for such a long period to contact with
every single KeyStore can be quite challenging in the case
of moving publishers.

Wireshark14 was used to measure the size of the exchanged
messages during the set up of the secure link using both
schemes. Based on the data presented in TABLE III, it is

14https://www.wireshark.org/

https://www.wireshark.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

TLS IBE

1 000

2 000

3 000

Scheme

C
on

su
m

ed
Ti

m
e

(m
s)

IBE
0

500

1 000

1 500

2 000

Scheme

comp
comm

Fig. 11: The time required to set up a 32B session key between
the publisher and a KeyStore using TLS and IBE. The right
sub-figure shows the communication (comm) and computation
(comp) time of the median value while using IBE.

TABLE III: The exchanged and stored data when using IBE
and TLS to set up a 32B session key between a publisher and
a KeyStore.

Scheme Exchanged Messages (B) Stored Data (B)

IBE 1061 453
TLS 3569 1346

apparent that the size of exchanged messages is three times
larger when TLS was used. Similarly, the table shows that
the size of data that the publisher needs to store is three
times larger when TLS was used. This data includes the CA
certificate in case of using TLS, while it includes the system
parameters params and the identity of the KeyStore (we used
“keystore1@tum.com” as an ID for the KeyStore) in the case
of IBE.

3) SEEMQTT Phases: In this subsection, we present the
performance evaluation of every phase of the protocol.

a) Phase 0: The two primary operations of this phase
are Setup algorithm to create the system public parameters
params and the Extract algorithm to set up the private
key of every KeyStore. Fig. 12 presents the consumed time
by these two algorithms. The measurement was performed
by running these two algorithms on one of the RPI4. The
measurement was repeated for 100 times for each algorithm.
The results show that the algorithm Setup takes a longer
time (almost 40%) compared to the time consumed by the
Extract algorithm. It is important to note few things: 1) The
Extract algorithm must be performed for every KeyStore
in the system while the Setup algorithm runs once. The
result shown in Fig. 12 represents the time that is needed to
perform Extract for one KeyStore. 2) The measured time
of Extract algorithm includes neither the time for receiving
the ID of the KeyStore nor the time for sending the private
key. 3) Finally, these two algorithms are usually performed
only once during the system setup.

Since These two algorithm were implemented as part of
the SEEMQTTlibrary, we have measured their performance
when they run over the ESP32 platform too. The results of
that evaluation are presented in the appendix A.

Setup Extract
10

15

20

25

30

Algorithm

C
on

su
m

ed
Ti

m
e

(m
s)

Fig. 12: The performance evaluation of Setup and Extract
algorithms when they run on RPI4.

b) Phase I: The time consumed by Phase I can be
divided into three sub-times as defined in (5):

TPhaseI := TPub
Connect +

n∑
i=1

(TPub
Encrypt + TPub

PublishK + TPub
Other)︸ ︷︷ ︸

TPhaseI−1

+ max
1≤i≤n

(Tnet+ksi
Pub↔ksi

+ TPub
Compare)︸ ︷︷ ︸

TPhaseI−2

(5)
Where TPub

Connect represents the time for the publisher to con-
nect to the broker, TPhaseI−1 represents the time to perform
Phase I-1 and TPhaseI−2 represents the time to perform Phase
I-2. We measured the time consumed by Phase I when different
numbers of KeyStores are used (i.e., n = 2, 3, 4, 5).

The TPhaseI−1 is defined as the sum of the time to
encrypt one symmetric master key (TPub

Encrypt) using IBE-based
encryption, the time to publish the encrypted key (TPub

PublishK),
and the time for other operations (TPub

Other) (e.g., generating the
master symmetric key and nonce, etc.) for the n KeyStores.
It is critical to note that all these times are independent of
the number of KeyStores. The same applies to TPub

Connect. It
is also important to distinguish between the time to encrypt
(TPub

Encrypt) using IBE encryption and the time to calculate
gIDks

(TPub
qID) of every KeyStore. As we have mentioned be-

fore, this operation happens once and should not be considered
as constant part of the encryption. Therefore, we have not
included this time in the calculation of TPhaseI−1. However,
this time was measured and included in TABLE IV besides all
other operations in Phase I that are independent of the number
of KeyStores .

The TPhaseI−2 is calculated as the maximum time of
Tnet+ksi
Pub↔ksi

and TPub
Compare of the n KeyStores, where Tnet+ksi

Pub↔ksi
represents the period between publishing the encrypted sym-
metric key to the nth KeyStore and receiving the acknowledg-
ment sent by ksi. This period includes the time required to
transmit the encrypted symmetric key over the broker, decrypt
it at the KeyStore ksi, and send the acknowledgment back to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

2 3 4 5
0

500

1 000

1 500

2 000

2 500

n

Ti
m

e
(m

s)

(a) TPhaseI−1

2 3 4 5
0

500

1 000

1 500

2 000

2 500

n

Ti
m

e
(m

s)

(b) TPhaseI−2

2 3 4 5
0

500

1 000

1 500

2 000

2 500

n

Ti
m

e
(m

s)

(c) TPhaseI

Fig. 13: The consumed time during (a) Phase I-1, (b) Phase I-2, and (c) Phase I in total when different numbers of KeyStores
n were used.

TABLE IV: Time performance of the main operations in Phase
I that are independent of the number of KeyStores n. Q1
represents the first quartile and Q3 represents the third quartile.

Sub-Phase Operation
Time (ms)

Q1 Median Q3

TPub
Connect 70.86 205.38 235.20

TPub
qIDks

1034.1 1037.12 1040.08

Phase I − 1
TPub
Encrypt 65.08 67.03 68.35

TPub
PublishK 1.20 1.70 1.76

Phase I − 2 TPub
Compare 0.04 5.00 5.10

the publisher. TPub
Compare represents the time required to decrypt

the acknowledged sent by ksi and compare the received nonce
with the stored one.

Fig. 13a presents the consumed time by Phase I-1 when
different numbers of KeyStores were used. The figure shows
that the time of Phase I-1 increases linearly when n increases.
Similarly, the time of Phase I-2 increases when n increases as
shown in Fig. 13b. Fig. 13c shows the time of the entire Phase
I. Similar to Phase I-1, the time increase when n increases.
The variance in the interquartile range (IQR) of the results
in Fig. 13b and Fig. 13c is resulting from the effect network
latency introduced by TPub

Connect and TPhaseI−2.
c) Phase II: The consumed time of the Phase II is

defined as in (6):

TPhaseII :=TPub
GenCredential + TPub

PublishCre + TPub
GenShare

+

n∑
i=1

(TPub
EncSS + TPub

PublishSS)
(6)

where TPub
GenCredential is the time required to create the cre-

dential, TPub
PublishCre is the time required to publish the gen-

erated credential, TPub
GenShare is the time required to perform

GenShare algorithm, TPub
EncSS is the time to encrypt the secret

share using AES-CBC with 128-bit key, TPub
PublishSS is the time

to publish the encrypted secret share, and n is the number of

TABLE V: Time performance of main operations in Phase
II that are independent of the number of KeyStores n.Q1
represents the first quartile and Q3 represents the third quartile.

Operation
Time (ms)

Q1 Median Q3

TPub
GenCredential 309.38 310.76 312.15

TPub
PublishCre 1.35 1.37 1.40

TPub
EncSS 0.27 0.28 0.28

TPub
PublishSS 0.97 0.98 1.02

KeyStores n = 2, 3, . . . , 5. Note that based on the result we
obtained in § VII-B1, we decided to use t = ⌊n/2⌋ + 1. All
the mentioned times except TPub

GenShare are independent of the
number of KeyStores. TABLE V includes the measured time
for all these operations.

Fig. 14a shows the consumed time during the execution
of the GenShare algorithm using n = 2, 3, . . . , 5 and
t = ⌊n/2⌋ + 1, while Fig. 14b shows the consumed time
during the entire Phase II. The figure shows that the consumed
time increases linearly by the increase of n. Based on the
result presented in TABLE V and Fig. 14b, it is clear that
TPub
GenCredential presents almost 90% of the consumed time

of this phase. This is not surprising if we remember that the
publisher needs to digitally sign the credential. This operation
is very time consuming compared to the other operations in
this phase.

d) Phase III: The consumed time of Phase III is defined
as in (7):

TPhaseIII := TPub
EtM + TPub

PublishMSG (7)

where TPub
EtM is the time required to perform authenticated

encryption on a message using AES-GCM with 128-bit key
and TPub

PublishMSG is the required time to publish this encrypted
message. Both times are independent of the number of the
KeyStores, but they are related to the size of the transmitted
message. To show that relation, we measure both TPub

EtM and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

2 3 4 5
0.5

1

1.5

2

n

C
on

su
m

ed
Ti

m
e

(m
s)

(a) TPub
GenShare

2 3 4 5
320

330

340

350

n

C
on

su
m

ed
Ti

m
e

(m
s)

(b) TPhaseII

Fig. 14: The consumed time (a) to perform GenShare for t = ⌊n/2⌋+1, and (b) to perform the entire Phase II when different
numbers of KeyStores n were used.

24 25 26 27 28 29 210 211
0

2

4

6

8

Message Size (B)

Ti
m

e
(m

s)

(a) TPub
EtM

24 25 26 27 28 29 210 211
0

2

4

6

8

Message Size (B)

Ti
m

e
(m

s)

(b) TPub
PublishMSG

24 25 26 27 28 29 210 211
0

2

4

6

8

Message Size (B)

Ti
m

e
(m

s)

(c) TPhase III

Fig. 15: The consumed time (a) to encrypt a message using AES-GCM with 128-bit key, (b) to publish the encrypted message,
and (c) the sum of these both operations using different message sizes.

TPub
PublishMSG for different message sizes as shown in the

horizontal axes of Fig. 15.
Fig. 15a shows that TPub

EtM increases by the increase of
the message size. On the other hand, Fig. 15b shows that
TPub
PublishMSG almost the same for the all message size less

than 211 B. We see an increase on the consumed time when the
message size 211 B was used. Fig. 15b shows the consumed
time of the entire Phase III, which follows the same behavior
of TPub

EtM .
e) Phase IV: The consumed time of Phase IV is defined

as in (8):15

TPhaseIV :=

t∑
i=1

(Tnet
Request + T ksi

Evaluate + Tnet
share)

+ TSub
ComShare + TSub

DEtM

(8)

where Tnet
Request is the time required to prepare the request

and send it to the KeyStore over the network, T ksi
Evaluate

is the time to evaluate the request based on the submitted
credentials, Tnet

share is the time required to receive the secret
share, TSub

ComShare is the time to perform the ComShare to
combine the t received shares, TSub

DEtM is the time to decrypt
the message using AES-GCM with 128-bit key, and t is

15if sending the requests and getting the secret shares from the t KeyStores
were implemented to run in parallel, the

∑t
i=1() in (8) must be replaced by

maxti=1(). Also, only TSub
DEtM occurs every time during this phase, while

the other operations occur when a new topic key is exchanged.

the threshold number for reconstructing the secret from the
collected shares. Fig. 16a shows the sum of Tnet

Request, T
net
share,

and T ksi
Evaluate for t = 2 and 3. The figure shows that time

increases when t is increases. We have measured the time
T ksi
Evaluate within every KeyStore and we found that it takes

12.8ms (the median value) for the KeyStore to evaluate the
request that includes two credentials. Fig. 16b presents the
relation between TSub

ComShare and t. It is important to note that
the number of KeyStores n is not affecting the TSub

ComShare.
The figure shows that time increase when t increases. Finlay,
Fig. 16c presents the measured time to decrypt the received
message using the re-constructed topic key. The results show
that the decrypting time increases when the sizes of the
messages increase (similar to the case of encryption as shown
in Fig. 15a).

C. Informal Security Analysis

This section presents an informal security analysis for the
phases of our proposed protocol and discusses how they are
secure against various famous attacks.

a) Phase 0: Since The PKG and every KeyStore use
a secret link to exchange the extracted prKIDksi , attackers
can not obtain and change this key. The other information
(i.e., params and IDksi) are public and do not need to
be protected. It is critical to mention that compromising the
private key of any TAs in a specific domain will allow

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

2 3
0

20

40

60

80

100

t

C
on

su
m

ed
Ti

m
e

(m
s)

(a) Tnet
Request + T ksi

Evaluate + Tnet
share

2 3
0

0.02

0.04

0.06

0.08

0.1

t

C
on

su
m

ed
Ti

m
e

(m
s)

(b) TSub
ComShare

24 25 26 27 28 29 210 211
0.02

0.04

0.06

0.08

0.1

t

C
on

su
m

ed
Ti

m
e

(m
s)

(c) TSub
DEtM

Fig. 16: The consumed time by the different operations of Phase IV.

attackers to issue credentials to malicious intermediate TAs
or malicious subscribers in that domain. Also, compromising
the master private key of PKG will allow attackers to decrypt
all messages.

b) Phase I: Within this phase, the SymKPub−ksi is en-
crypted using IBE. Attackers (i.e., external attackers, malicious
brokers, malicious KeyStores, or malicious subscribers) can
intercept the message cki. However, they can not decrypt it
and obtain the symKPub−ksi without having the ksi’s private
key. Storing this key securely within each KeyStore makes
obtaining this key maliciously very difficult. Also, the use
of non-repeated nonce nci makes it impossible for attackers
to reuse previous captured cki. Although the puKPub is
exchanged without any protection, the KeyStore can detect
if attackers try to replace this key with another one by
comparing the decrypted H(puKPub) and the calculated one
from the received puKPub. Finally, any malicious changes
to the acknowledgment message ACKi are detectable by the
publisher using the Compare algorithm.

c) Phase II: During this phase, every secret share αi

is encrypted with the symmetric master key SymKPub−ksi .
Attackers need to break the symmetric cipher to obtain the
shares. However, using the AES-GCM with 128-bit key makes
it not feasible for attackers to break the protocol by breaking
this cipher since it is considered practically secure against
all attacks. In addition, any changes to encrypted shares will
be detected due to the use of the authenticated encryption
algorithm. Finally, it is important to note that the security
of this phase (and the entire proposed system) is based on
the security of Shamir’s secret sharing scheme. An attacker
needs to collect at least t shares to reconstruct the symKtpi .
Such a case is possible only if the attacker can compromise t
KeyStores or if this t KeyStores decide to collude. Choosing
t carefully and using secure storage systems to store the
symKPub−ksi within every KeyStore makes the extraction of
the t shares practically very difficult.

d) Phase III: Since the published messages are encrypted
using the symKtpi

, the security of this phase depends on
the security of Phase II. Attackers can decrypt the message
only if they manage to reconstruct symKtpi . Also, any change
to the encrypted message will be detected by the authorized
subscriber before the decryption due to the authenticated

encryption algorithm.
e) Phase IV: Using the non-repeated nonce ncr prevents

attackers from submitting pre-exchanged requests to the Key-
Stores. Also, using the signature σr will ensure that no attacker
can manipulate the request without being detected. The only
way unauthorized subscribers can decrypt the message is by
colluding with or compromising t KeyStores or retrieving
the private key of the TA (or intermediate TAs) to sign a
credential that authorizes access to the topic key from the
KeyStores. Both cases seem practically very difficult.

f) Conclusion: Based on the previous discussion, we can
say that our protocol is immune enough against the eavesdrop-
ping attack, replay attack, Man-In-The-Middle (MitM) attack,
and the arbitrary behavior of the attackers.

VIII. RELATED WORK

Securing Pub/Sub-based systems was a hot topic during
the last few years, thus it was presented heavily [25], [39]–
[41]. This section discusses some recent related researches that
aim to secure the Pub/Sub model, in general, and the MQTT
protocol in particular. We classified the related research into
three main categories based on the main goal of every paper
into solutions that focused on ensuring either the confiden-
tiality, authorization, or both of the published message. Then,
we compare our proposed solution to other existing solutions
based on the requirements that we discussed in § I.

A. Confidentiality

One of the most common solutions to ensure data confiden-
tiality between the publishers and subscribers is using TLS to
secure the link between these nodes and the broker as was
recommended by [23]. A certificate authority is needed to
support the publisher and the subscriber to verify the broker’s
certificate. A key problem of this solution is the need to trust
the broker. Lee et al. [42] proposed an extension to the TLS,
called MQTLS, to provide E2E security between publishers
and subscribers via an untrusted broker. In their solution, both
publisher and every subscriber need to set up a TLS-based
secure link with the broker. Then, they exchange an ephemeral
Diffie Hellman (DH) public component through the broker
to set up a symmetric key, the so-called one-time delivery

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

key. The delivery key is used to encrypt another key, the so-
called payload encryption key. This key is used to encrypt the
payload of the published messages. Like TLS, the proposed
solution provides secure “one-to-one” communication only.
I.e., each publisher needs to set up a one-time delivery key
with every subscriber to exchange the payload key encryption.
Consequently, the publisher needs to verify and authenticate
every subscriber’s certificate each time it connects to the
broker or new subscribers subscribe to the publisher’s topic.
This makes the proposed solution inappropriate for mobile
IoT devices with unstable connections and many subscribers.
In addition, the publisher uses the subscriber’s certificate to
authenticate and authorize that subscriber. Thus, the solution
does not ensure the decoupled authorization (i.e., authorization
without violating decoupling principles).

Similar to the TLS-based solution, Peng et al. [43] proposed
a secure Pub/Sub system. However, instead of using Public
Key Infrastructure (PKI), they proposed the use of IBE. Their
solution adopts a third trusted party to play the roles of PKG
and topic address provider. All the subscribers, as well as the
broker (gateway), need to register with this server to get a
private key. The gateway itself is used as PKG for all publisher
nodes. The main drawback of both solutions is that they
do not provide publisher-subscriber end-to-end encryption. In
[44], the authors proposed, in contrast to our untrusted broker
requirement, a trusted security-enhanced broker that supports
E2E secure group communication. The broker sets up a session
with every registered client. This session key is used to encrypt
a topic key generated by the broker for every topic. All the
clients will share the same topic keys. Clients (publishers and
subscribers) will use the topic key to encrypt and decrypt the
messages published under that topic.

To avoid the involvement of the untrusted broker, many
authors propose the use of a central trusted server to create a
symmetric session key between publisher and subscriber and
ensure end-end data confidentiality [18], [19], [45], [46]. In
[46], Mektoubi et al. used a central server, called Certificate
Authority (CA), to create a certificate for each registered
node. Also, the CA creates a private key and certificate
for each topic. Each subscriber uses a topic’s certificate to
communicate with the publisher and get the topic’s private key.
The authors mentioned that private keys and topic certificates
are distributed manually to the publisher. This represents the
main limitation to adopt this solution, especially if we consider
the need to change this key periodically and automatically.

Nolan [18] presented a symmetric authenticated payload
encryption scheme to ensure the confidentiality of published
data over MQTT. In his scheme, Nolan used a central server to
create a shared key between the publisher and the subscribers.
All nodes need to be registered with the server to get a
Pre-Shared Key (PSK) used to secure the exchange of a
generated secret session key, which is used to encrypt and
decrypt the published data. The author did not elaborate on
how to exchange such a secret key with each node. Publisher
does not have control on who can access the session key.
Similarly, Dahlmanns et al. [19] proposed the use of a trusted
server, so called key server, to support end-to-end security in
publish/subscribe systems. A pairwise PSK must be shared

between every node and the key server and used during the
handshake protocol to set up fresh session keys. The main
pitfall of these solutions is the need for the PSK between
every publisher and the server. Additionally, the server is a
single point of failure.

Borcea et al. [47] proposed the use of Proxy Re-Encryption
(PRE) [48] to ensure the E2E security between the publisher
and the subscriber without the need for any pre-negotiation. A
trusted policy authority is used to create a re-encryption key
for each subscribers. That key is used by the broker to re-
encrypt the published message by the publisher. This method
suffers from a number of pitfalls: 1) The use of asymmetric
encryption to encrypts the published message (messages are
encrypted using the public key of the publisher). 2) The need
to change the implementation of the broker. 3) It does not
ensure the integrity of the published messages. 4) The reuse
of the same key for multiple topics.

B. Authorization

Few papers focused only on providing authorization solu-
tions for Pub/Sub-based communication. Most research tried to
solve the authorization as part of a comprehensive framework
that ensures authorization besides confidentiality. However,
there are still few papers where the authorization was the
primary focus. Among these papers, many authorization mech-
anisms were adopted. For example, Access Control List (ACL)
was adopted in [49], [50], Attribute Based Access Control
(ABAC) [51], [52] security scheme was adopted to secure
MQTT protocol in [53], Role-Based Access Control (RBAC)
[54] was also adopted by many research such as [55], [56].
In most of these solutions, the goal is to determine whether a
certain node is allowed to publish or subscribe to a particular
topic. Also, the policy is not derived directly from the owner
of the data. Finally, the broker was used as a central trusted
component to enforce the policy rules. Due to this fact, the
broker becomes a single point of failure.

Besides the conventional access control models that we
mentioned before, some research papers adopted alternative
approaches such as policy-based access control [57], [58]
and capability-based access control [59]–[61]. In [57], authors
proposed the use of a policy-based approach, similar to our
solution, to allow the data publisher to control who can access
their publications and under what condition. However, the
broker was fully trusted and used to evaluate and enforce the
security policy.

C. Confidentiality and Authorization

Providing a comprehensive solution which ensures both
the confidentiality of the published messages and gives the
publisher a level of access control on the published messages
was proposed by many papers such as [15], [21], [62]–[65].

Hamad et al. [21] proposed the use of secret splitting [66]
to divide the symmetric topic key and share it with many Key-
Stores using the RSA cryptosystem [67]. With the help of the
KeyStores, the publisher can control who can access the part of
the key by issuing a security policy that grants the access right
to the subscribers without violating the decoupling property

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 19

TABLE VI: Comparison of SEEMQTT with other systems.

Year Solution R1 R2 R3 R4 Message Encryption Topic Key Exchange Authorization

2016 AIPS [43] AES (Symmetric) IBE –
2016 [23] AES (Symmetric) TLS-based ACL
2018 [18] AES (Symmetric) AES with PSK ACL
2017 PICADOR [47] PRE (Asymmetric) – –
2020 [50] AES (Symmetric) TLS-based ABAC
2007 [57] – – Trust delegation
2021 ENTRUST [19] ChaCha20 (Symmetric) ECDH with PSK ACL
2012 P3S [64] CP-ABE (Asymmetric) ABE Attribute-based
2015 SMQTT [15] CP/KP-ABE (Asymmetric) ABE Attribute-based
2014 [16] AES (Symmetric) ABE & AES Attribute-based
2021 SPPS [21] AES (Symmetric) RSA & AES Trust delegation
2022 SEEMQTT AES (Symmetric) IBE & AES Trust delegation

Requirement is not met Requirement is not discussed but it could be partially met Requirement is met
R1: No pre-shared Key R2: E2E Encryption R3: Decoupled authorization R4: Efficiency

of the Pub/Sub model. The need to verify the certificate of
every KeyStore can cause an overhead. This overhead can be
significant performance-wise for mobile devices. Also, using
secret splitting for dividing the key requires the availability of
all KeyStores to retrieve the key by subscribers.

Singh et al. [15] investigated the use of Ciphertext-Policy
ABE (CP-ABE) and Key Policy based ABE (KP-ABE) to
implement a secure MQTT protocol. In their proposal, they
used the broker as a PKG that creates master public param-
eters and private keys for each subscriber based on an access
policy. A publisher node uses the public parameters, provided
by the broker, and the access policy to encrypt a message.
Only subscribers who fulfill the access policy can decrypt
that message. Similarly, Pal et al. [64] proposed a system for
content-based Pub/Sub system where CP-ABE was used to
encrypt published messages and store it in repository services.
Subscribers who have properties that satisfy the publisher
policy can obtain the message and decrypt it. Instead of using
ABE to encrypt the published data, Wang et al. [16] proposed
the use of an ABE-based scheme to encrypt a symmetric
key that is used to encrypt the data. Only subscribers with
proper properties can get the symmetric key and consequently
decrypt the message. Although these solutions ensure both data
authorization and confidentiality, they come with a massive
overhead due to pairing operations needed in ABE. Also, the
number of attributes that specify the authorized subscriber
plays a significant role in the imposed overhead. In our
proposed solution, we overcame that by not deriving the
encryption key from the access policy.

D. Comparative Study

1) Solutions and Requirements: TABLE VI presents a
comparison between our proposal and some of the solutions
presented above. The comparison is based on the requirements
introduced in § I, and the mechanism used to implement these
requirements (mainly R2 and R3). This includes the encryption
algorithms that were used to encrypt the published messages
and the topic key, and the mechanism used to implement
the access control solution. Regarding R4, we considered this
requirement was met only if the solution was implemented
and evaluated using a constrained device.

In our protocol, we use a symmetric encryption to protect
the data, which is far lighter than asymmetric methods likes
the ones used by [15], [47], [64]. Although, many other
presented solutions used symmetric encryption similar to our
solution, they differ in other aspects such as the need for a pre-
shared secret with the key store [18], [19], trusting the broker
[23], [43], [50], or using different asymmetric encryption
schemes to support the topic key exchange [16], [21]. Based on
TABLE VI, the most two comparable solution to our system
are [21] and [16]. Both use symmetric encryption to protect the
published messages and enable the publisher access control.
However, different asymmetric encryption schemes were used
to protect the topic key. Furthermore, both solutions were not
evaluated using constrained devices (more about that later).
Based on the system architecture, both [18] and [19] are very
comparable to our system since they used a server to generate
and store the topic keys. However, both solutions require a
PSK between every node and that server, while our solution
does not require that. Also, our solution used many KeyStores
instead of one server. Finally, our proposal does not consider
each server as a fully trusted node.

2) Performance Evaluation: Comparing our proposed so-
lution with existing ones is a challenging task due to the
difficulty of reproducing the previous results of most of the
research, the use of different platforms, or the inapplicability
to run these solutions using constrained devices. However,
we try in this section to detail the performance evaluation
of the four most comparable solutions (i.e., [16], [18], [19],
[21]) that were discussed in § VIII-D1. TABLE VII shows
that performance evaluation as well as the platform used to
evaluate each one of these solutions. Although using a PSK
between the Key server and the publisher in both [16] and
[19] makes the exchange of a topic key faster compared to our
system, it makes both solutions impracticable for the mobile
IoT system as we have shown in TABLE VII. Furthermore,
the performance evaluation of SPPS [21] does not consider
the time required to verify the KeyStores’ certificates. The
verification of digital certificates can introduce a considerable
overhead when it is performed on a constrained devices.
Finally, while it can be seen at first glance that the performance
of [16] is comparable to our system’s performance, it is
essential to note that [16] was evaluated using a very powerful

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 20

TABLE VII: Time performance comparison of SEEMQTT with other systems.

Solution Performance Evaluation Platform

[18] ≈ 520ms to exchange the topic key Nordic Semiconductor NRF52 Development Kit
ENTRUST [19] ≈ 100ms to perform ECDH and topic key exchange RedBear Duo with 120MHz ARM Cortex-M3 CPU
[16] ≈ 1000ms to encrypt a 128-bit key using CP-ABE with a

single attribute
PC with 1.60GHz Intel Quad-Core i7 2677M CPU and 4GB
RAM

SPPS [21] ≈ 200ms to exchange topic key with two KeyStores Raspberry Pi 3 Model B+ with 1.4GHz quad-core ARM
Cortex-A53 CPU and 1GB

SEEMQTT ≈ 900ms to exchange topic key with two KeyStores ESP32 board with a 240MHz Xtensa dual-core 32-bit LX6
microprocessor

platform compared to the one that we used.

IX. CONCLUSION

Using the Pub/Sub model to support the communication of
mobile IoT systems seems promising if security concerns are
solved. This paper presents SEEMQTT, an E2E secure MQTT-
based communication for mobile IoT systems. SEEMQTT
allows the publisher to use a symmetric key to encrypt the
published data. To share this key with the subscribers without
violating the decoding requirement of Pub/Sub model, our
solution adopts Shamir’s secret sharing scheme to generate
and share the key with several honest-but-curious KeyStores.
Also, our system employs IBE to set up secure links between
the publisher and every KeyStore that are used to exchange
the generated secret shares. Finally, our system uses the trust
delegation to enable the publisher to authorize subscribers to
access these shares. Only authorized subscribers can obtain
the shares and combine them to reconstruct the key that was
used to encrypt the published message. We have developed an
Arduino-based library to support the implementation of the
publisher on the ESP32 platform. Also, we have provided
a Linux-based implementation for KeyStore. Our proposed
solution was evaluated using real IoT devices. The experiment
results show that our solution outperforms alternative state-
of-the-art methods such as ABE-based solutions even though
these solutions were evaluated on very powerful platforms
compared to ours. Based on that, our solution is considered
a very efficient solution to ensure secure E2E MQTT-based
communication for mobile IoT systems. As a future work, we
plan to investigate the adoption of lightweight IBE schemes.
In addition, we plan to investigate other trust delegation access
control schemes which could be used instead of the KeyNote
trust management system.

ACKNOWLEDGMENTS

This work is partially supported by the European Union’s
Horizon 2020 research and innovation programme through
the following H2020 projects: nIoVe (A Novel Adaptive
Cybersecurity Framework for the Internet of Vehicles) under
Grant Agreement No. 833742 and CONCORDIA under Grant
Agreement No. 830927.

APPENDIX

PERFORMANCE EVALUATION OF COMSHARE ALGORITHM
USING ESP32 PLATFORM

The ComShare will be executed on the subscribers. Since
we are more interested in the evaluation of the protocol on the

Pub, we did not include the performance evaluation of this
algorithm in the results section and decide to move it here to
the appendix. Fig. 17a presents the required time to combine
two shares (i.e., t = 2) when different values of n were used
(n = 2, . . . , 15). As it was expected, the results shows that
the time is almost the same regardless of the value of n. This
result is in line with (2) which indicates that calculating the
key depends only on the number of valid shares t that are
used to define the polynomial f of degree t − 1. Fig. 17b
presents the required time to combine t shares for all values
of t ∈ [2, 15]. The figure show that the using a large value of
t will introduce more overhead during the re-construction of
the key. It important to note that the presented time does not
include the time to obtain the shares from different KeyStores.

PERFORMANCE EVALUATION OF IBE ALGORITHMS USING
ESP32 PLATFORM

In this section, we present the evaluation of the four
IBE algorithms, namely Setup, Extract, Encrypt, and
Decrypt, when they were executed on resource-constrained
IoT devices such as the ESP32 board that was used as a
publisher in our testbed. Fig. 18a presents the time required
to execute the Setup and Extract algorithms. From the
figure, it can be seen that the time to execute the Setup
algorithm is larger than the time needed to perform the
Extract algorithm. This outcome is consistent with the
result that we have obtained when RPI4 was used (see Fig. 12).
However, the measured time for every algorithm is almost 24
times slower than the measured time when RPI4 was used.
Fig. 18b presents the time required to Encrypt different
message sizes. No significant difference was found between
the consumed time of encrypting different message sizes. This
was also the case for the decryption time as shown in Fig. 18c.
By comparing the consumed time of both algorithms, it is
clear that the decryption time is almost 7 times slower than
the encryption time. Note that the time for calculating the
gID, which is 1033.1ms, was not included as a part of the
encryption time.

REFERENCES

[1] S. Herrnleben, M. Pfannemüller, C. Krupitzer, S. Kounev, M. Segata,
F. Fastnacht, and M. Nigmann, “Towards adaptive car-to-cloud commu-
nication,” in 2019 IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops). IEEE,
2019, pp. 119–124.

[2] S. Shen, Z.-Q. Wei, L.-J. Sun, Y.-Q. Su, R.-C. Wang, and H.-M. Jiang,
“The shared bicycle and its network—internet of shared bicycle (iosb):
A review and survey,” Sensors, vol. 18, no. 8, p. 2581, 2018.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 21

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

n

Ti
m

e
(m

s)

(a) t = 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

t

Ti
m

e
(m

s)

(b) ∀n ∈ [2, t]

Fig. 17: The consumed time during the executing of the ComShare on an ESP32 platform while using different values of n
and t.

Setup Extract
560

580

600

620

640

660

680

Algorithm

C
on

su
m

ed
Ti

m
e

(m
s)

(a)

20 23 24 25 26 27 28 29 210
50

60

70

80

Message size

C
on

su
m

ed
Ti

m
e

(m
s)

(b)

20 23 24 25 26 27 28 29 210
481

482

483

484

Message size

C
on

su
m

ed
Ti

m
e

()

(c)

Fig. 18: The consumed time during the executing of (a) the Setup and Extract algorithms, (b) the Encrypt algorithm,
and (c) Decrypt algorithm over an ESP32 platform when different message sizes were used.

[3] F. Luo, C. Jiang, S. Yu, J. Wang, Y. Li, and Y. Ren, “Stability of cloud-
based uav systems supporting big data acquisition and processing,” IEEE
Transactions on Cloud Computing, vol. 7, no. 3, pp. 866–877, 2017.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM computing surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[5] T. Mishra, D. Garg, and M. M. Gore, “A publish/subscribe communi-
cation infrastructure for vanet applications,” in 2011 IEEE Workshops
of International Conference on Advanced Information Networking and
Applications. Biopolis, Singapore: IEEE, 2011, pp. 442–446.

[6] P. Nunes, C. Nicolau, J. P. Santos, and A. Completo, “From a traditional
bicycle to a mobile sensor in the cities.” in VEHITS, 2020, pp. 81–88.

[7] A. Chodorek, R. R. Chodorek, and P. Sitek, “Uav-based and webrtc-
based open universal framework to monitor urban and industrial areas,”
Sensors, vol. 21, no. 12, p. 4061, 2021.

[8] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, “Security issues
and requirements for internet-scale publish-subscribe systems,” in Pro-
ceedings of the 35th Annual Hawaii International Conference on System
Sciences. Big Island, HI, USA: IEEE, 2002, pp. 3940–3947.

[9] S. Andy, B. Rahardjo, and B. Hanindhito, “Attack scenarios and security
analysis of mqtt communication protocol in iot system,” in 2017 4th
International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI), 2017, pp. 1–6.

[10] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, August 2018. [Online]. Available: https://rfc-editor.
org/rfc/rfc8446.txt

[11] H. Hidayat, P. Sukarno, and A. A. Wardana, “Overhead analysis on the
use of digital signature in mqtt protocol,” in 2019 International Confer-
ence on Electrical Engineering and Informatics (ICEEI). Indonesia:
IEEE, 2019, pp. 87–92.

[12] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE symposium on security and privacy
(SP’07). Oakland, California, USA: IEEE, 2007, pp. 321–334.

[13] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual In-

ternational Conference on the Theory and Applications of Cryptographic
Techniques. Aarhus, Denmark: Springer, May 2005, pp. 457–473.

[14] M. Ion, G. Russello, and B. Crispo, “Design and implementation
of a confidentiality and access control solution for publish/subscribe
systems,” Computer networks, vol. 56, no. 7, pp. 2014–2037, 2012.

[15] M. Singh, M. Rajan, V. Shivraj, and P. Balamuralidhar, “Secure MQTT
for Internet of Things (IoT),” in 2015 Fifth International Conference
on Communication Systems and Network Technologies. Gwalior, MP,
India: IEEE, April 2015, pp. 746–751.

[16] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance evaluation
of attribute-based encryption: Toward data privacy in the iot,” in 2014
IEEE International Conference on Communications (ICC). Sydney,
Australia: IEEE, 2014, pp. 725–730.

[17] B. Girgenti, P. Perazzo, C. Vallati, F. Righetti, G. Dini, and G. Anastasi,
“On the feasibility of attribute-based encryption on constrained iot
devices for smart systems,” in 2019 IEEE International Conference
on Smart Computing (SMARTCOMP). Washington, DC, USA: IEEE,
2019, pp. 225–232.

[18] S. Nolan, “Authenticated payload encryption scheme for internet of
things systems over the mqtt protocol,” Master’s thesis, Dublin, Ireland:
Trinity Collage Dublin, The University of Dublin, 2018.

[19] M. Dahlmanns, J. Pennekamp, I. B. Fink, B. Schoolmann, K. Wehrle,
and M. Henze, “Transparent end-to-end security for publish/subscribe
communication in cyber-physical systems,” in Proceedings of the 2021
ACM Workshop on Secure and Trustworthy Cyber-Physical Systems,
2021, pp. 78–87.

[20] A. Paverd, A. Martin, and I. Brown, “Modelling and automatically
analysing privacy properties for honest-but-curious adversaries,” Tech.
Rep, 2014.

[21] M. Hamad, E. Regnath, J. Lauinger, V. Prevelakis, and S. Steinhorst,
“Spps: Secure policy-based publish/subscribe system for v2c com-
munication,” in 2021 Design, Automation Test in Europe Conference
Exhibition (DATE). Virtual: IEEE, 2021, pp. 529–534.

[22] C. Bormann, M. Ersue, A. Keränen, and C. Gomez, “Terminology

https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 22

for Constrained-Node Networks,” Internet Engineering Task Force,
Internet-Draft draft-bormann-lwig-7228bis-07, Oct. 2021, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-bormann-lwig-7228bis-07

[23] ISO, “Information technology – Message Queuing Telemetry Trans-
port (MQTT) v3.1.1,” International Organization for Standardization,
Geneva, Switzerland, ISO ISO/IEC 20922:2016, 2016.

[24] Y. Jia, L. Xing, Y. Mao, D. Zhao, X. Wang, S. Zhao, and Y. Zhang,
“Burglars’ iot paradise: Understanding and mitigating security risks of
general messaging protocols on iot clouds,” in 2020 IEEE Symposium
on Security and Privacy (SP). virtual: IEEE, 2020, pp. 465–481.

[25] E. Onica, P. Felber, H. Mercier, and E. Rivière, “Confidentiality-
preserving publish/subscribe: A survey,” ACM computing surveys
(CSUR), vol. 49, no. 2, pp. 1–43, 2016.

[26] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[27] ——, “Identity-based cryptosystems and signature schemes,” in Work-
shop on the theory and application of cryptographic techniques. Paris,
France: Springer, April 1984, pp. 47–53.

[28] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Annual international cryptology conference. Santa Barbara,
California, USA: Springer, 2001, pp. 213–229.

[29] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in Proceedings 1996 IEEE Symposium on Security and Privacy.
Oakland, CA, USA: IEEE, 1996, pp. 164–173.

[30] J. Feigenbaum, D. J. Ioannidis, A. D. Keromytis, and D. M. Blaze,
“The KeyNote Trust-Management System Version 2,” RFC 2704, Sep.
1999. [Online]. Available: https://rfc-editor.org/rfc/rfc2704.txt

[31] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[32] M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2000, pp. 531–545.

[33] S. Briais and U. Nestmann, “A formal semantics for protocol narrations,”
Theoretical Computer Science, vol. 389, no. 3, pp. 484–511, 2007.

[34] M. Bugliesi and P. Modesti, “Anbx-security protocols design and
verification,” in Joint Workshop on Automated Reasoning for Security
Protocol Analysis and Issues in the Theory of Security. aphos, Cyprus:
Springer, March 2010, pp. 164–184.

[35] M. Blaze, J. Ioannidis, and A. D. Keromytis, “Experience with the
keynote trust management system: Applications and future directions,”
in International Conference on Trust Management. Springer, 2003, pp.
284–300.

[36] F. T. Penney, “Implementation of Shamir’s Secret Sharing in C,”
2017, accessed: 2021-11-27. [Online]. Available: http://fletcher.github.
io/c-sss/index.html

[37] D. McGrew and J. Viega, “The galois/counter mode of operation (gcm),”
submission to NIST Modes of Operation Process, vol. 20, pp. 0278–
0070, 2004.

[38] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller,
“Elliptic curve cryptography (ecc) cipher suites for transport layer
security (tls),” RFC 4492, Tech. Rep., 2006.

[39] C. Esposito and M. Ciampi, “On security in publish/subscribe services:
A survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2,
pp. 966–997, 2014.

[40] A. V. Uzunov, “A survey of security solutions for distributed pub-
lish/subscribe systems,” Computers & Security, vol. 61, pp. 94–129,
2016.

[41] J. Munster, “Securing publish/subscribe,” Master’s thesis, University of
Toronto, 2018.

[42] H. Lee, J. Lim, and T. T. Kwon, “Mqtls: Toward secure mqtt commu-
nication with an untrusted broker,” in 2019 International Conference
on Information and Communication Technology Convergence (ICTC),
2019, pp. 53–58.

[43] W. Peng, S. Liu, K. Peng, J. Wang, and J. Liang, “A secure pub-
lish/subscribe protocol for internet of things using identity-based cryp-
tography,” in 2016 5th International Conference on Computer Science
and Network Technology (ICCSNT). Changchun,China: IEEE, Decem-
ber 2016, pp. 628–634.

[44] H.-Y. Chien, P.-C. Lin, and M.-L. Chiang, “Efficient mqtt platform fa-
cilitating secure group communication,” Journal of Internet Technology,
vol. 21, no. 7, pp. 1929–1940, 2020.

[45] A. Bashir and A. H. Mir, “Securing communication in mqtt enabled
internet of things with lightweight security protocol,” EAI Endorsed
Transactions on Internet of Things, vol. 3, no. 12, pp. 1–6, 10 2017.

[46] A. Mektoubi, H. L. Hassani, H. Belhadaoui, M. Rifi, and A. Zakari,
“New approach for securing communication over mqtt protocol a
comparaison between rsa and elliptic curve,” in 2016 Third Interna-
tional Conference on Systems of Collaboration (SysCo). Casablanca,
Morocco: IEEE, 2016, pp. 1–6.

[47] C. Borcea, Y. Polyakov, K. Rohloff, G. Ryan et al., “Picador: End-
to-end encrypted publish–subscribe information distribution with proxy
re-encryption,” Future Generation Computer Systems, vol. 71, pp. 177–
191, 2017.

[48] A.-A. Ivan and Y. Dodis, “Proxy cryptography revisited,” in The Network
and Distributed System Security Symposium (NDSS). San Diego,
California, USA: The Internet Society, 2003.

[49] Y. Upadhyay, A. Borole, and D. Dileepan, “Mqtt based secured home
automation system,” in 2016 Symposium on Colossal Data Analysis and
Networking (CDAN). Indore, Madhya Pradesh, India: IEEE, 2016, pp.
1–4.

[50] A. Gabillon, R. Gallier, and E. Bruno, “Access controls for iot networks,”
SN Computer Science, vol. 1, no. 1, p. 24, 2020.

[51] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide
to attribute based access control (abac) definition and considerations
(draft),” NIST special publication, vol. 800, no. 162, pp. 1–54, 2013.

[52] P. Colombo and E. Ferrari, “Access control enforcement within
mqtt-based internet of things ecosystems,” in Proceedings of the 23nd
ACM on Symposium on Access Control Models and Technologies, ser.
SACMAT ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 223–234. [Online]. Available: https://doi.org/10.
1145/3205977.3205986

[53] A. Rizzardi, S. Sicari, D. Miorandi, and A. Coen-Porisini, “Aups: an
open source authenticated publish/subscribe system for the internet of
things,” Information Systems, vol. 62, pp. 29–41, 2016.

[54] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[55] J. Bacon, D. M. Eyers, J. Singh, and P. R. Pietzuch, “Access control in
publish/subscribe systems,” in Proceedings of the second international
conference on Distributed event-based systems. Rome, Italy: ACM,
July 2008, pp. 23–34.

[56] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and
K. Moody, “Role-based access control for publish/subscribe middleware
architectures,” in Proceedings of the 2nd international workshop on
Distributed event-based systems. San Diego California: ACM, June
2003, pp. 1–8.

[57] L. Opyrchal, A. Prakash, and A. Agrawal, “Supporting privacy policies
in a publish-subscribe substrate for pervasive environments.” J. Net-
works, vol. 2, no. 1, pp. 17–26, 2007.

[58] J. L. Hernández-Ramos, G. Baldini, R. Neisse, M. Al-Naday, and M. J.
Reed, “A policy-based framework in fog enabled internet of things for
cooperative its,” in 2019 Global IoT Summit (GIoTS), 2019, pp. 1–6.

[59] Y. Nakamura, Y. Zhang, M. Sasabe, and S. Kasahara, “Capability-
based access control for the internet of things: An ethereum blockchain-
based scheme,” in 2019 IEEE Global Communications Conference
(GLOBECOM), 2019, pp. 1–6.

[60] J. L. H. Ramos, A. J. Jara, L. Marı́n, and A. F. Gómez-Skarmeta,
“Distributed capability-based access control for the internet of things,”
J. Internet Serv. Inf. Secur., vol. 3, pp. 1–16, 2013.

[61] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based
security approach to manage access control in the internet of
things,” Mathematical and Computer Modelling, vol. 58, no. 5,
pp. 1189–1205, 2013, the Measurement of Undesirable Outputs:
Models Development and Empirical Analyses and Advances in
mobile, ubiquitous and cognitive computing. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S089571771300054X

[62] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings
of the 13th ACM conference on Computer and communications security.
Alexandria, Virginia, USA: ACM, 2006, pp. 89–98.

[63] M. Ion, “Security of publish/subscribe systems,” Ph.D. dissertation,
University of Trento, 2013.

[64] P. Pal, G. Lauer, J. Khoury, N. Hoff, and J. Loyall, “P3s: A pri-
vacy preserving publish-subscribe middleware,” in ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms and Open
Distributed Processing. Beijing, China: Springer, December 2012, pp.
476–495.

[65] M. A. Tariq, B. Koldehofe, A. Altaweel, and K. Rothermel, “Providing
basic security mechanisms in broker-less publish/subscribe systems,” in
Proceedings of the Fourth ACM International Conference on Distributed

https://datatracker.ietf.org/doc/html/draft-bormann-lwig-7228bis-07
https://datatracker.ietf.org/doc/html/draft-bormann-lwig-7228bis-07
https://rfc-editor.org/rfc/rfc2704.txt
http://fletcher.github.io/c-sss/index.html
http://fletcher.github.io/c-sss/index.html
https://doi.org/10.1145/3205977.3205986
https://doi.org/10.1145/3205977.3205986
https://www.sciencedirect.com/science/article/pii/S089571771300054X

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 23

Event-Based Systems. Cambridge, United Kingdom: ACM, 2010, pp.
38–49.

[66] S. Bruce, Applied cryptography: protocols, algorithms, and source code
in C. Wiley, 1996, p. 70.

[67] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, no. 2, p. 120–126, feb 1978. [Online]. Available:
https://doi.org/10.1145/359340.359342

Mohammad Hamad received the B.Eng. degree in
software engineering and information system from
Aleppo University, Syria, in 2009 and the Ph.D.
(Dr.-Ing.) degree in computer engineering from the
Institute for Data Technology and Communication
Networks at the Technical University of Braun-
schweig, Germany, in 2020.

Since 2020, he is a postdoctoral researcher in the
Embedded Systems and Internet of Things group
in the Faculty of Electrical Engineering and Infor-
mation Technology at the Technical University of

Munich (TUM). His research interests are in the area of autonomous vehicle
and IoT security.

Andreas Finkenzeller received both the B.Sc. and
M.Sc. degree in electrical engineering and computer
science at Technical University Munich (TUM), Ger-
many.

Since 2021, he is working in the Embedded Sys-
tems and Internet of Things Group at TUM as a PhD
candidate. His research interests include embedded
systems, secure communication, and IoT Security.

Hangmao Liu received the B.Sc. degree in electrical
and computer engineering from Technical University
of Kaiserslautern, Germany, in 2017, and the M.Sc.
(Dipl.-Ing.) degree in electrical engineering and in-
formation technology from Technical University of
Munich (TUM), Germany, in 2021.

His research interest focuses on the cyber security
in IoT (Internet of Things) networks.

Jan Lauinger is a Research Associate and PhD
Candidate at the Professorship of Embedded Sys-
tems and Internet of Things, Technical University of
Munich. He obtained his B.Sc. and M.Sc. degree in
Electrical Engineering and Information Technology
at TUM focusing on large scale anomaly detection,
network architectures and services, automation and
robotics. His current field of research encompasses
cyber security solutions for the IoT/Internet of Vehi-
cles, where he contributes to the EU-funded nIoVe
project.

Vassilis Prevelakis is the professor of embed-
ded computer security at the Technical University,
Braunschweig, in Germany. He holds B.Sc. degrees
with Honours in Mathematics and Computer Science
and M.Sc. in Computer Science from university of
Kent at Canterbury, U.K. and a Ph.D. in Computer
Science from university of Geneva, Switzerland. He
has worked in various areas of security in Systems
and Networks both in his current academic capacity
and as a freelance consultant.

Prevelakis current research involves issues related
to vehicular automation security, secure processors, security aspects of soft-
ware engineering, auto-configuration issues in secure VPNs, etc.

Sebastian Steinhorst received the M.Sc. (Dipl.-
Inf.) degree in computer science from the Goethe
University Frankfurt, Germany, in 2005 and the
Ph.D. (Dr. phil. nat.) degree in computer science
from the same university in 2011.

He is an associate professor at Technical Univer-
sity of Munich (TUM) in Germany. He leads the
Embedded Systems and Internet of Things group
in the Department of Electrical and Computer En-
gineering. He was also a co-program PI in the
Electrification Suite and Test Lab of the research

center TUMCREATE in Singapore. The research of Prof. Steinhorst centers
around design methodology and hardware/software architecture co-design of
secure distributed embedded systems for use in IoT, automotive and smart
energy applications.

https://doi.org/10.1145/359340.359342

	Introduction
	Requirements
	Contribution

	Background
	Publish/Subscribe Model
	Pub/Sub components
	mqtt
	mqtt Built-in Security Solutions

	Cryptographic Background
	Secret Sharing Scheme
	Identity Based Encryption

	Decentralized Trust Delegation
	Trust Delegation
	Credential Evaluation
	Trust Delegation Algorithms

	System and Threat Models
	System Model
	Threat Model

	SEEMQTT Protocol
	Phase 0: Setup Phase
	Phase I: Symmetric Master Key Distribution
	Phase I-1
	Phase I-2

	Phase II: Topic Key Distribution
	Phase III: Encrypted Message Transmission
	Phase IV: Key Retrieval and Message Decryption
	Remarks

	Implementation
	Experiments and Analysis
	Testbed
	Performance Analysis
	Shamir's Secret Sharing Scheme
	ibe vs tls
	SEEMQTT Phases

	Informal Security Analysis

	Related Work
	Confidentiality
	Authorization
	Confidentiality and Authorization
	Comparative Study
	Solutions and Requirements
	Performance Evaluation

	Conclusion
	Appendix
	References
	Biographies
	Mohammad Hamad
	Andreas Finkenzeller
	Hangmao Liu
	Jan Lauinger
	Vassilis Prevelakis
	Sebastian Steinhorst

