FLaS6G: Federated Learning as a Service in 6G
Using Distributed Data Management Architecture

Wenxuan Ye*, Xueli Anf, Xueqgiang Yan*, Mohammad Hamad*, Sebastian Steinhorst*

* TUM School of Computation, Information and Technology, Technical University of Munich
 Advanced Wireless Technology Laboratory, Munich Research Center, Huawei Technologies Duesseldorf GmbH
 Wireless Technology Lab, 2012 Laboratories, Huawei Technologies Co., Ltd
Email: {wenxuan.ye, xueli.an, yanxueqiangl}@huawei.com, {mohammad.hamad, sebastian.steinhorst} @tum.de

Abstract—Native Al support is envisioned as one of the
fundamental goals driving network architecture innovation. The
privacy-preserving capabilities of Federated learning (FL) make
it promising in vertical applications; however, the central server-
based system and lack of trusted data management limit its
widespread use. In order to provide FL as a service in 6G, this
work proposes a transparent and traceable data management
architecture based on Distributed Ledger Technology (DLT), and
enables distributed and off-chain data storage by adopting a
Distributed Data Storage Entity (DDSE). We decentralize the
FL central server by smart contract selecting an aggregator
from a set of aggregator candidates to perform client selection
and model aggregation. In addition to the system architecture,
this work gives a specific implementation of FL service lifecycle
management, task execution, and data upload and download
procedures, which are used to realize the exchanges of model
parameters between the selected clients and aggregators. The
simulation result shows that the impact of introducing trusted
mechanisms on the overall system time spent is related to the
setting of FL, with an overhead of 15% in the worst case.

Index Terms—Federated Learning (FL), Distributed Ledger
Technology (DLT), Network Architecture Design, 6G

I. INTRODUCTION

With the development of 5G technologies and massive
deployment of the corresponding infrastructure, communica-
tion networks are shifting from human-centric connectivity
based on enhanced Mobile BroadBand (eMBB) to Internet
of things based on Ultra-Reliable Low-Latency Communica-
tion (URLLC) and massive Machine Type Communication
(mMTC) [1]. While 5G opens the door to the Internet of
everything, 6G is expected to evolve into a platform for
intelligent connectivity of everything.

One of the fundamental goals driving network architecture
innovation is native Al support, where the ideal support for
Al is taken into account in the design of the communication
system [2]. Currently, there is still some distance from this
vision, in that the central cloud serves as the primary functional
center for data processing and analysis, with the commu-
nication architectures only being the channel for delivering
data. However, computing in vertical industries is migrating
to the edge of mobile communication systems because of the
constraints of central cloud-based computing models in terms
of privacy protection, latency requirements and scalability [3].
The mobile communication system, as an infrastructure with

Federated Learning
Service Lifecycle Manager ~
(FLSLM)

L

Distributed Ledger Technology

(DLT) Platform
c Aggregator
T
Aggregator Selection Model Aggregation
=
E F
Distributed Data Storage Entity G
(DDSE) } -

Fig. 1: DLT-based FL architecture, where FLSLM undertakes
FL service lifecycle management, the DLT platform assumes
transparent and traceable data management, and DDSE is
adopted for distributed and off-chain data storage. The smart
contract selects an aggregator from a set of aggregator candi-
dates to carry out client selection and model aggregation.

numerous terminal connections, will be a potential solution if
it could enable the native support for AL

Federated Learning (FL) is an emerging machine learning
technique in which participating devices, known as clients,
are coordinated by a central server to perform learning tasks,
where only local model updates are shared without uploading
the raw data to the server [4]. Clients are responsible for
training the model with local data after downloading the global
model, and then uploading the local model to the central
server. The central server has three main functions. The first
is to select clients to participate in the training for each global
epoch, i.e., client selection; the second is to send configuration
information of tasks to the selected clients, i.e., training
initialization; and the final is to aggregate the local models
uploaded by the clients to obtain the global model, i.e., model
aggregation [5]. Due to the privacy-preserving nature, FL has
great potential in mobile communication systems, especially
in industry verticals, such as Vehicle to Everything (V2X) and
Industrial Internet of Things (IloT) [6].

Despite the great benefits mentioned, there are some issues
in FL systems. It mainly adopts the central server-based
network design, which may suffer from Single Point of Failure
(SPOF) or Denial of Service (DoS) attacks. Besides, there

is no native trustworthy management of data, including local

and global models. Without proper management, there is a

risk of exposure of sensitive or confidential data, resulting in

personal privacy breach or financial loss [7]. Also, low-quality
models can be uploaded to a central server by unreliable
clients, leading to degradation or even a collapse of training.

Meanwhile, data management by a single entity inherently

imposes limitations on clients to participate only in tasks

associated with that entity.

Trusted data management is critical to the robustness of
the FL, as FL involves a large amount of intermediate data
exchange between clients and aggregators during training
iterations. One possible solution is to leverage Distributed
Ledger Technology (DLT). The unique features of DLT, such
as immutability, traceability, transparency and decentralization,
make it ideal for supporting a decentralized data management
system. DLT uses distributed and shared ledgers for recording
transactions that are packaged in blocks with unalterable
cryptographic signatures, then these blocks are linked in
chronological order [8]. The data storage on immutable ledgers
is referred as on-chain, and the opposite case is off-chain. To
carry out trusted transactions and agreements without the need
for a third-party authority, DLT utilizes smart contracts, which
are self-executing computer programs or transaction protocols.
Previous work, such as [9]-[12], explore trustworthiness of
data management into FL systems by incorporating DLT,
however, they failed to sufficiently consider privacy issues or
resource efficiency.

To achieve the goal of supporting FL as a native service
within mobile communication system, the main contributions
of this paper are summarized as follows:

1) A native trustworthy data management architecture is
proposed, where the DLT platform assumes transparent
and traceable data management, Distributed Data Storage
Entity (DDSE) is adopted to realize distributed and off-
chain data storage.

2) Decentralization of the central server is achieved by smart
contracts selecting an aggregator from multiple aggregator
candidates, where the selected aggregator is responsible for
implementing client selection and model aggregation.

3) In addition, this work also presents FL service lifecycle
management, and gives a concrete implementation of task
execution and data upload and download procedures, which
are used to realize the exchanges of model parameters
between the selected clients and aggregators.

4) To investigate the impact of introducing this data manage-
ment mechanism on the time spent in the FL system, we
set up a simulation system to simulate task execution, with
Hyperledger Fabric as the DLT platform, Kademlia-based
Distributed Hash Table (DHT) as DDSE and PyTorch-
based FL framework.

II. PROPOSED ARCHITECTURE
A. System architecture

The novel DLT-based FL system architecture is composed of
five functional entities and the corresponding seven interaction

interfaces for data communication (as shown in Fig. 1):
1) Federated Learning Service Lifecycle Manager (FLSLM):
responsible for lifecycle management of FL services, consist-
ing of three phases, service initialization, service Operation
and Maintenance (O&M) and service termination, in charge of
task preparation, task execution and task termination respec-
tively. Here, task refers to learning services involving multiple
clients, and is identified by task ID, for the system may
execute multiple tasks simultaneously. FL service lifecycle
management is described in detail in Section. III-A. 2) Client:
responsible for downloading global model parameters, training
the local model with local datasets and then uploading the
trained local model parameters. 3) Aggregator: responsible
for model aggregation and client selection. Model aggregation
refers to the aggregation of local models into a global model
according to the aggregation algorithm, and client selection
refers to the selection of a specified number of clients to join
the model training according to the client selection strategy.
4) DDSE: responsible for raw data storage, in this novel design
for storing model parameters, as well as task configuration
information and client registration information introduced later
on. 5) DLT Platform: responsible for three functions, namely
data management, aggregator selection and task termination.
Data management refers to the management of data upload and
download access permission and data activity record. Aggre-
gator selection means the selection of aggregators according
to the aggregator selection strategy. Task termination means
collection of all the records on the DLT platform generated by
consuming the FL service. It occurs when a task termination
request from FLSLM is received or the task termination
criteria is satisfied, e.g., the maximum global epoch is reached.

FLSLM, DDSE and the DLT platform are considered to be
native network entities in the mobile communication system.
A client can be any connected terminal or device capable
of data collection and model training computations, such as
mobile phones, cars, robots, etc. The aggregator could be
within mobile communication systems, such as in the form
of network entity with capabilities for model aggregation.
Alternatively, it could belong to a third-party organization,
in which proper registration and authentication procedure are
required in order to certify such entity to be utilized within a
mobile communication system.

Distinguished from the traditional FL architecture, the prin-
cipal features include: First, the introduction of the DLT
platform and DDSE to perform on-chain hash storage and
off-chain raw data storage, which replaces the direct com-
munication mode between client and aggregator for model
parameters exchange; Second, decentralized the central server
into a number of aggregators; Last, the implementation of
aggregator selection strategy and task termination criteria in
the form of smart contract in the DLT platform.

B. Transaction definition

To enable reliable data management, data operations are
stored as transactions in the unalterable ledger. Thus, in

TABLE I: Transaction type definition

Transaction Symbol Definition

Data Tup Upload requester requests permission to upload
upload data.

Data Taown Download requester requests permission to down-
download load data.

Transaction Teon DDSE sends transaction confirmation to the DLT
confirma- platform after accomplishing the required opera-
tion tions.

Aggregator Ty A smart contract deployed on the DLT platform
selection is invoked to perform aggregator selection.

Task ter- Tterm A smart contract is invoked to perform task ter-
mination mination.

addition to the system architecture and functional entities
described above, a transaction set is defined in Table. 1.

Download requester refers to the entity that needs to down-
load data, including FLSLM, clients, aggregators, network
functions of the service provider network or a third-party
application provider. Upload requester is for entity with needs
to upload data, including FLSLM, clients or aggregators.

ITII. SYSTEM DESIGN

Based on the system architecture in Section. II, this section
describes FL service lifecycle management and task execution.
Besides, it presents a concrete implementation of data upload
and download procedures, which are used to realize the
exchanges of model parameters between the selected clients
and aggregators.

The whole work is based on the following assumptions.
First, entities of the core network of the mobile communication
system or deployed by third parties are honest but curious
and that clients may be malicious. Second, FLSLM has com-
pleted the initial interaction with the DLT platform, and each
has obtained the communication address of the other. Third,
aggregators are within the scope of mobile communication
systems, or that belonging to a third party have followed
a proper registration and authentication procedure, and the
aggregators’ registration information have been stored on the
DLT platform. Similarly, clients have been authenticated by
and attached to the mobile network, during which the hash
and raw data of client registration information are stored in
the DLT platform and DDSE, respectively. Given that client
registration information may contain private data, it is not
suitable to be stored directly in the DLT platform [13]. Last,
all the procedures are described without the exceptional case,
e.g., invalid permission. When the DLT platform or DDSE
encounters abnormal access, it will directly return a message
indicating that the access is denied.

A. Federated learning service lifecycle management

Federated learning service lifecycle management consists
of three phases. Fig. 2 illustrates these phases and the corre-
sponding task operations. The three phases are:

1) Service initialization: During this phase, FLSLM per-
forms task definition, i.e., it defines the task ID and task config-
uration information, which includes but is not limited to model

Task definition

Service Initialization ~|—— Smart contract deployment

Task configuration

Aggregator selection and
training initialization

Client selection

\4 Task

1 execution

Client training initialization

Service Operation
and Maintenance

Local model update

_,_____l____
' '
U |

Global model aggregation

Task O&M information collection

[
£ 1 [1

Y

Service Termination |—|

Fig. 2: The three phases of FL service lifecycle management
and the corresponding task operations, where task execution
takes place in service operation and maintenance.

Task termination |

architecture, hyperparameters, initial model parameters, loss
function, aggregation algorithm, global epoch, local epoch,
hash algorithm and client selection strategy. Next, FLSLM
deploys aggregator if needed. Then it deploys aggregator
selection strategy and task termination criteria, both in the
form of smart contract, on the DLT platform, which occurs
in the operation called smart contract deployment. Finally,
FLSLM uploads the task configuration information, which
implements in the operation named task configuration.

2) Service operation and maintenance: During this phase,
the task execution, which will be described later specifically
in Section. III-B, takes place. Besides, collects information,
such as participating clients and aggregators IDs, from the
DLT platform and DDSE as part of the task O&M information
collection on the basis of which further processing (e.g., data
monitoring or data analysis), can be performed.

3) Service termination: During this phase, FLSLM termi-
nates services when the pre-defined conditions are met. Then,
a smart contract is invoked to perform task termination, and
FLSLM collects the result.As the last step, FLSLM removes
the deployed aggregator if necessary.

B. Task execution

Task execution is achieved through the operations of four
entities (i.e., client, aggregator, DLT platform, and DDSE) and
the interaction between them (see Fig. 3). It can be divided
into several global epochs, and each global epoch consists of
the following five tasks:

1) Aggregator selection and training initialization: In each
global epoch, the DLT platform invokes the smart con-
tract to select one aggregator. Then each aggregator will
contact the DLT platform periodically to check whether it
was selected or not. Afterwards, the selected aggregator
checks whether it has task configuration information.
If not, it needs to perform training initialization, i.e.,

®@ DLT Platform @@@ Aggregator
_l Client Selection
S8 —
Aggregator Selection Model Aggregation

OROCO

Distributed Data Storage Entity
(DDSE)

26

Fig. 3: Task execution in one global epoch, which is composed
of five steps, namely @ Aggregator selection and training ini-
tialization, @ Client selection, @ Client training initialization,
@ Local model update and ® Global model aggregation.

’ Clients M

1. Task participation request (client ID) o 1

Selected
clients

Selected
aggregator
U PUTRURSRORORR | TP T

’ DLT

Task participation refponse (task ID, c]ienf: ID)

2.
<

Training initialization (conditional)

[3. Selected clients downloading task configuration information |

I 5 I I
Fig. 4: Client training initialization. After the selected aggre-
gator performs client selection, clients periodically check in,
and subsequently selected clients undergo optional training
initialization, which needs to be executed only once per client
for a task.

downloading task configuration information from the
DLT platform and DDSE; If so, the procedure goes to
the next step.

2) Client selection: The selected aggregator downloads
client registration information, then it performs client se-
lection according to the client selection strategy. Finally,
the aggregator returns the IDs of selected clients to the
DLT platform.

3) Client training initialization: Clients periodically com-
municate with the DLT platform to check the selection
results. Selected clients need to check whether they
have task configuration information. If not, they need to
perform training initialization; If so, they directly perform
the corresponding operations. The concrete procedure is
illustrated in Fig. 4.

4) Local model update: Selected clients download the latest
global model parameters, train local models with the local
dataset, and then upload the local model parameters.

5) Global model aggregation: The selected aggregator
downloads the relevant local model parameters, aggre-
gates them in keeping with the aggregation algorithm to
get the global model, then uploads the model parameters.

C. Data upload and download procedure

With the introduction of the DLT platform, data access
no longer implies direct interactions between clients and the
central server. To enable trusted data management, the upload
requester is required to obtain authorization from the DLT
platform by sending an upload permission request including

Upload requester DLT platform

1. T,, Upload permission request (task ID,
d data)

DDSE

requester ID, hash value of

}. Upload permission response

<
3. Upload request (task ID, requester ID, requested data)

4. Hash Generation

5. Data verification request (task ID, requester
| ID, hash value) & Data verification response
<€

6a. Upload response

6b. T,,, Upload response confirmation

(a) Data upload procedure

Download requester DLT platform

1. Tgown Download permission request

DDSE

(task ID, requester ID)

2. Download permission response
(hash value of requested data)

<

3. Download request (task ID, requester 1D, hash value)
4. Data verification request (task ID, requester ID,
hash value) & Data verification response

>

5a. Download response (requested data)

5b. T,,, Download response confirmation

(b) Data download procedure

Fig. 5: According to the proposed trusted mechanism, data
interactions need to be permitted by the DLT platform, and
then data upload and download are implemented within the
DDSE.

hash values of the uploaded data. Similarly, the download
requester needs to request for download permissions from the
DLT platform. Afterwards, DDSE must implement the data
validation before returning the requested data or writing down
the uploaded data.

Fig. 5a describes the upload procedure, which includes the
following steps:

1) The upload requester sends an upload permission request,
including task ID, requester ID and hash value of uploaded
data, by initiating Transaction T},, to the DLT platform.

2) Based on the permission of the upload requester, the DLT
platform returns an upload permission response.

3) The upload requester initiates an upload request to the
DDSE including task ID, requester ID and uploaded data.

4) After receiving the data to be uploaded by the requester,
DDSE generates a hash value based on the hash algorithm.

5) DDSE initiates a data verification request to the DLT
platform and receives the corresponding response.

6) DDSE writes the requested data down, and sends an upload
response confirmation as Transaction 7., to the DLT
platform.

The data download procedure, which is shown in Fig. 5b,

is similar to the data upload procedure. Therefore, we will
describe it here.

IV. PERFORMANCE ANALYSIS

To investigate the impact of introducing a trustworthy
mechanism on the overall system, a simulation system is set
up to simulate the task execution introduced in Section. III-B

8,000

8,000 T T T T 20

6,000 |- 6.000

4,000 4,000

2,000

2,000

Time consumption (s)

z
5
I
Trusted mechanism ratio (%)

Time consumption (s)

Trusted mechanism ratio (%)

olaor wew @BEm MO, ologs maw S0 501,
3 2

Global epochs Fraction of clients (%)

(a) Global epoch vs Time (b) Fraction of clients vs Time

8,000

8,000

6,000 6,000

4,000 4000 N

H1
6,513
5

2,000 - 2,000 f-qs------

Time consumption (s)
Time consumption (s)

2,840

Trusted mechanism ratio (%)
Trusted mechanism ratio (%)

241
5 10 15 20 500 1000 1500
Local epochs

0
2000

0 o Li2son

Local dataset size

(c) Local epochs vs Time (d) Local dataset size vs Time

Fig. 6: The consumed time in terms of (a) Global epoch, (b) Fraction of clients, (c) Local epoch and (d) Local dataset size.
The impact of introducing trusted mechanisms on the overall system time spent is dependent on the parameters of FL.

where the data upload and download procedure are shown in
Section. II-C.

The simulation is performed in a 64 bit Ubuntu 20.04 on
Oracle VirtualBox Manager with 4 processors and 12 GB
RAM, which is launched on the host machine with 1 Intel
CPU (1.08 GHz and 8 cores).

FL model training framework is built with the PyTorch
by referring to [4]. Since the whole system focuses on data
management and does not involve model training itself, it
has no impact on training accuracy. Considering the need
for multiple carriers to collaborate in an immutable ledger
and for all participants to be authenticated, a consortium
blockchain is more appropriate than a public blockchain,
which is completely open to peers with no identity verification,
and a private blockchain, which is under the control of
a single entity. Hyperledger Fabric, as a distributed ledger
application supporting consortium blockchain, is adopted as
the DLT platform because of its great performance in terms of
scalability, performance and trust through the execute-order-
validate architecture [14]. DDSE is implemented as a DHT
based on the Kademlia protocol for its remarkable search
efficiency [15].

The FL goal is to predict the digit based on the learning
task with the MNIST dataset, which consists of 60000 small
images of handwritten single digits between 0 and 9. The
training model is a Convolutional Neural Network (CNN),
including convolutional layers and linear layers, with ReLU
as activation function, SGD as optimizer, cross-entropy loss
as loss function, and a total of parameters of 21840. We set
the batch-size to 8, the learning rate to 0.01, and the total
number of clients to 100 by default.

Global epochs, fraction of clients participating in each
global epoch, local epochs and local dataset size are used
as independent variables of this study, and time used for
interacting with DHT, for interacting with DLT, and for model
training locally by clients as the dependent variables. The
initial settings are global epoch of 10, local epoch of 10,
fraction of clients of 10, and local dataset size of 1000.

As shown in Fig. 6, each subgraph is simulated for the
studied variables while ensuring that the other variables remain
constant. The primary axis shows the time used by the three
components and the secondary axis shows the percentage
of time used by the trusted mechanism as a percentage of

the system, i.e., the proportion of time spent on DLT and
DDSE interactions to the total time spent. In Fig. 6a, time
on DLT, model training and DDSE are linearly related to the
number of global epochs because task execution is in global
epochs. In each global epoch, clients and aggregators need
to communicate with DLT and DDSE for a certain amount of
times for model downloading and uploading, so the increase in
global epochs leads to rise in time on DLT and DHT, similar to
changes to model training. As a result, the proportion of time
spent on trustworthy mechanisms is almost the same. Fig. 6b
shows that time spent on DLT and DDSE interactions varies
with the number of clients selected for each global epoch,
given that a specified number of clients need to interact with
DLT and DDSE. While for model training, on the other hand,
time used does not vary significantly because multiple clients
train locally in parallel, leading to the increase of percentage
of trustworthy mechanism. Then in Fig. 6c, the number of
local epochs is only concerned with the local model training,
thus there is almost no influence on time spent on DDSE and
DLT, and the percentage keeps decreasing, which is similar to
the result of local epoch variation in Fig. 6d.

In summary, the feasibility of the proposed architecture is
verified by simulations. The results show that the impact of
the introduction of trusted mechanisms on the overall system
time spent is related to the FL settings, with the overhead
being 15% in the worst case.

V. RELATED WORK

There are a number of papers exploring auditability and
accountability on data management in FL systems by incor-
porating DLT.

Majeed et al. in [9] proposed a blockchain-based network
architecture with the concept of channel introduced by Hyper-
ledger Fabric, where each FL task has a dedicated channel for
information logging. Clients read the global model directly
from the blockchain network, train models based on local
dataset, and then upload local model updates to the blockchain,
after which the blockchain platform computes the global
model. They gave an initial idea of how to apply DLT in
data management of FL, however, model aggregation via the
DLT platform implies that all local model parameters of one
global epoch are stored in a single transaction, which is a big
burden in terms of transaction size and storage.

Another blockchained FL architecture was presented in [10],
in which each client trains the local model and updates it to the
associated peer, who then generates the block and appends it to
a blockchain, eventually each client downloads the block and
aggregates it to get the global model. This approach actually
asks each participating client to download a local model block
and then to act as an aggregator, resulting in each client having
access to all local models and increasing the difficulty of
privacy protection.

The architecture named FL-Block introduced in [11] lever-
ages DHT as a data storage entity, in which key-value pairs
are stored into different nodes on the table based on the hash
value of keys. The pointer of the global updates is stored on
the blockchain and DHT is employed to store raw data off-
chain, after which edge servers download the blocks and act
as aggregators, then the global model is distributed to clients.
Instead of storing data directly on the blockchain platform,
which is inefficient for the blockchain storage and may leak
private information hidden in data due to transparency, DHT-
based off-chain storage is adopted in this work to ensure data
unalterable. However, all the edge servers involved have access
to the block containing local model update, which also poses
the risk of privacy leakage, and duplicate model aggregation
computation is a waste of resources.

Moreover, a solution is designed in [12] to execute FL
processes in the form of smart contracts, including clients
getting the latest global models and uploading local models,
and aggregation of the local models, in which way trust and
security are improved. This work proposes a new approach to
automate FL with smart contracts, while various privacy issues
or data management problems mentioned above have not been
properly addressed.

Notwithstanding pioneers accomplishing reliable opera-
tional records in DLT-based data management, there are some
pitfalls to the aggregation approach, since computation within
smart contracts puts great pressure on the blockchain storage,
and computation by clients increases the difficulty of privacy
protection. It is also worth noting that client selection is a
significant step in FL, and there is some research on this
subject [16]. However, the current literature lacks specificity
on how to implement FL, including client selection, with
the proposed architecture from a system design perspective.
Therefore, despite the aforementioned attempts, a concrete and
practical architecture for decentralized and trustworthy FL is
so far lacking in research domains.

VI. CONCLUSION AND OUTLOOK

Through the architecture proposed in this paper, data man-
agement is achieved in a trusted way as clients interact with the
aggregators through the DLT platform, and the system stores
hash values on-chain and raw data off-chain, realizing privacy
protection without placing a huge burden on DLT storage.
Besides, the central server is decentralized by selecting an ag-
gregator among multiple aggregator candidates, which reduces
a series of pitfalls brought by centralization. By introducing
a DLT platform and a data storage entity, data management

is decoupled from the aggregation approach, and the clients
could participate in multiple tasks rather than the limited tasks
related to the central server. It is likely to change the existing
business model, where somehow client data is bound to the
corresponding central server.

Based on this work, there are several interesting aspects that
deserve further consideration. For example, in the aggregator
selection, multiple aggregators could be selected for aggre-
gation instead of just one to avoid excessive computational
workload when a great number of local model parameters need
to be combined. The specific architecture of aggregators can
be implemented in the form of a hierarchy.

ACKNOWLEDGMENTS

This work is supported by Munich Research Center, Huawei
Technologies Duesseldorf GmbH and Technical University of
Munich.

REFERENCES

[1] ITU-R, “M.2083 IMT Vision — ‘Framework and overall objectives of
the future development of IMT for 2020 and beyond’,”

[2] P. Z. Wen Tong, “6G: The Next Horizon: From Connected People and
Things to Connected Intelligence,” in Cambridge University Press, 2021.

[3] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” in IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358,
Fourthquarter 2017, doi: 10.1109/COMST.2017.2745201.

[4] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
Blaise Agiiera y Arcas, “Communication-Efficient Learning of Deep
Networks from Decentralized Data,” in CoRR, vol. 1602.05629, 2016.

[5] K. A. Bonawitz, et al., “Towards federated learning at scale: System
design,” in CoRR, vol. abs/1902.01046, 2019.

[6] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, “Federated
learning for 6g communications: Challenges, methods, and future direc-
tions,” in China Communications, vol. 17, no. 9, pp. 105-118, 2020.

[7]1 Lian Jye Su, “Data Governance: Definitions, Challenges, And
Universal Framework,” in ABi research, Feb. 2022, retrieved from
https://go.abiresearch.com/lp-data-governance-definitions-challenges-
and-framework?utm_source=media&utm_medium=email

[8] Nakamoto, Satoshi. (2009). “Bitcoin: A Peer-to-Peer Electronic Cash
System,” in Cryptography Mailing list at https://metzdowd.com.

[9]1 U. Majeed and C. S. Hong, “FLchain: Federated Learning via MEC-

enabled Blockchain Network,” in 2019 20th Asia-Pacific Network Op-

erations and Management Symposium (APNOMS), 2019, pp. 1-4, doi:
10.23919/APNOMS.2019.8892848.

H. Kim, J. Park, M. Bennis and S. -L. Kim, “Blockchained On-Device

Federated Learning,” in IEEE Communications Letters, vol. 24, no. 6,

pp. 1279-1283, June 2020, doi: 10.1109/LCOMM.2019.2921755.

Y. Qu et al, “Decentralized Privacy Using Blockchain-Enabled

Federated Learning in Fog Computing,” in IEEE Internet of

Things Journal, vol. 7, no. 6, pp. 5171-5183, June 2020, doi:

10.1109/J10T.2020.2977383.

A. R. Short, H. C. Leligou and E. Theocharis, “Execution of a Federated

Learning process within a smart contract,” 2021 IEEE International

Conference on Consumer Electronics (ICCE), 2021, pp. 1-4, doi:

10.1109/ICCE50685.2021.9427734.

X. Yan, X. An, W. Ye, M. Zhao and J. Wu, “A Blockchain-based

Subscriber Data Management Scheme for 6G Mobile Communication

System,” 2021 IEEE Globecom Workshops (GC Wkshps), 2021, pp.

1-6, doi: 10.1109/GCWkshps52748.2021.9682154.

E. Androulaki, et al., “Hyperledger fabric: A distributed operating

system for permissioned blockchains,” CoRR, vol. abs/1801.10228,

2018.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informati-

ion system based on the XOR metric”, In Proc. Ist Int. Workshop on

Peer-to-Peer Systems (IPTPS), pp. 53-65, 2002-Mar

Peter Kairouz, et al., “Advances and Open Problems in Federated

Learning,” CoRR, vol. abs/1912.04977.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

