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Abstract—The trustworthiness of sensor data readings is crucial
for IoT applications. The trend of decentralized and distributed
architectures give rise to multi-party scenarios where mutual
trust between different parties might not be present. Current
approaches to increase trust in sensor readings include crypto-
graphic authentication, redundancy of sensors, and plausibility
verification of received signals. However, these approaches can
often only defend against certain types of attacks.

In this paper, we propose a multi-layer approach to increase
the trust in single data sources, such as wireless sensors, by
using a trusted execution environment (TEE) and succinct non-
interactive arguments of knowledge over authenticated data (AD-
SNARKs). First, we bring several trust metrics as close to the
sensor as possible to reduce the surface of attacks. Second, we
develop an optimized constrained system for AD-SNARKs that
allows offloading statistical operations on the sensor data, such as
moving average, to a non-trusted constrained device. By lowering
the number of constraints to 6, our implementation is able to
generate proofs in 60ms on a Raspberry Pi 3(B) offering 128
bit of security with all validation data fitting into 1023 bytes
of payload. Compared to other security approaches, this is a
small overhead for achieving provable sensing and processing of
data from source to consumer, which is a major step towards
distributed trust for IoT applications.
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I. INTRODUCTION

Smart devices are used for sensing changes in the environ-
ment, perform computation onboard and send the results to a
consumer of such data. The trend of pushing the computation
towards the edge and bringing decentralized and distributed
architectures to the forefront, brings new challenges regarding
security and trust.

To explain the problem we are trying to tackle, consider
the following example in context of Industrial Internet of
Things (IIoT): In a blockchain-based supply chain management
application, the party receiving the shipment is interested to
know if the temperature of the freight is in the range that
complies to the requirements. Such a shipment could be of
vaccines where the temperature needs to be sub-zero to ensure
its integrity. Wireless sensors can be used to monitor the
temperature and the data generated by the sensors is sent to
a blockchain. Since the receiving party does not have control
over the shipment process, it has limited trust in the sensor
data in the blockchain. In the real world, there can be multiple
suppliers and the sensing capabilities can be provided by some
other service providers, which complicates the situation.
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Figure 1: The architecture of the micro-controller shows how the value
from the sensor is read directly into the secure world. This diagram
does not show the exact internal architecture, but is developed to aid
in explanation of the concept. The blocks colored in red show that
they are not inside the TEE and can be malicious.

At first glance, this problem can be solved by authenticating
and performing integrity protection on data from the wireless
sensors. However, the computation onboard can still be
manipulated and the receiver would have to recalculate the data
of interest from the raw sensor data to enhance trust. When the
amount of data and computation grows, recalculating them is
not an attractive proposition. Redundant sensors can be added
to the wireless device, but this would only protect against a
sensor failure because the computation on the data can still be
manipulated.

Instead of focusing on redundancy, we aim for a solution
that works even with a single sensor. First, this simplifies the
problem domain to find and evaluate approaches. Second, it
allows our solution to be applied to low-cost systems consisting
of constrained device. Third, a solution for a single-sensor
scenario can easily be scaled to a more complex system but
not necessarily vice versa.

A. Contributions

In this paper, we propose a multi-layer trust-enhancing
methodology to increase the trust in single data sources, such
as individual sensors. We aim to bring security mechanisms
for data readings as close to the source as possible and enable
verifiable computation on constrained device or on devices
between the sensor and consumer, such as a gateways. In
particular, we979-8-3503-4647-3/23/$31.00 ©2023 IEEE



• incorporate several trust metrics, such as Distributed trust
(DT), close to the data source (sensor) using a TEE, as
shown in Figure 1. The closeness is numerically measured
and is shown in (Section II-B),

• develop an optimized Succinct Non-Interactive Arguments
of Knowledge (SNARKs) constraint system for operations,
such as moving average and sliding variance, that enable
even embedded devices to generate SNARKs proof, shown
in (Section V-B), and

• compare our approach with the state of the art regarding
closeness to the source of the individual trust metrics
(Section VI).

II. METRICS FOR COMPARISON

A. Trust Metrics

We use the trust evaluation scheme from [1]. They have
performed an extensive survey of the trust techniques used in
the field of Internet of Things (IoT) and they have categorized
them into what they call trust metrics. They use these trust
metrics to evaluate entire systems. Three important metrics
relevant for us are:

1) Data perception trust (DPT) which focuses on the
plausibility verification of the streaming sensor data.

2) Identity trust (IT) which is a trust metric that shows that
the sensor values are authenticated.

3) System security and robustness (SSR) which is assigned
to a hardened system in terms of security.

Further trust metrics and their explanation can be reached
in the aforementioned paper [1]. We extend their trust metrics
by what we call DT. It is the ease of incorporating trust in
multiple parties of an ecosystem. This trust metric is becoming
increasing relevant in the trend of distributed and decentralized
architectures.

B. Introducing closeness to source factor

This factor is used to numerically calculate the closeness to
source of the respective trust metric. This is presented in Figure
2. Here a single-source sensor node (SSN) is sending data to
the consumer via a gateway. Closeness to source factor =
H − h where H is the total number of hops according to the
network architecture from the consumer to the sensor node
(in the Figure 2 the total number of hops is H = 4). The
measure h is the entity from which a particular trust technique
is introduced in the data with the consumer as the reference
point. Our aim is to minimize this factor for each trust metric,
effectively introducing trust from as close to the source as
possible.

III. RELATED WORK

We evaluated the trust technique approaches in our literature
review, based on the trust metrics and closeness to source factor
introduced in the previous section II. We have formulated
the comparison in Table I. It shows the trust metrics for
each approach along with the number of sources they use,
the architecture they adopt, and whether the approach is a
data oracle (service that transport data securely to or from a

Figure 2: A single-sourced sensor node (SSN) is connected to a
gateway, and is sending data sensor data to the consumer. The data
reaches the consumer after a few more network hops. The letter H
represents the total number of network hops between the source and
the consumer. The small h is used to describe the network component
from where the trust technique is incorporated.

blockchain) or not. It also shows the minimum closeness to
source factor a particular trust metric achieves in the approach.
Lastly, at the end of table we also present our approach to
show how it compares with other approaches.

The first approach, which we consider state of the art,
Reliable, Resilient and Secure IoT for Smart City Applications
(RERUM) project, presents statistical computations to achieve
DPT trust metric. The also authenticate the data from the
sensor nodes. Helping them achieve IT trust metric right at
the source of the data. However, the threat of manipulation of
data by malicious parties is not addressed by their approach.
Javed12 [3] suggests involving signal processing to enhance the
reliability of the data from the sensors but does not focus on
constrained devices. Sicari13 [4] admittedly, introduces many
levels of trust from the source but they rely on having multiple
sources of data and do not focus on the aspect of DT.

In the domain of data oracles, Witnet [5] and Astrea [6]
address the aspect of DT in the content of data using their pro-
tocol. Which relays data between the source and the consumer.
The source of data for their approach is websites. Therefore,
their approach does not incorporate trust from the actual source
which might be a sensor on site sending daily temperatures to
the website. Similarly, Town Crier (TC)/Chainlink [7], [8] and
provable [9] provide trust techniques for secure transportation
of data to the blockchain. They also utilize TEE in their
approach. However, manipulation of data by a malicious actor
is still possible. Zk-AuthFeed [10] is similar to our approach,
where the authors use AD-SNARKs feeding data into smart
contracts on the Ethereum blockchain. However, their approach
is focused on the performance aspects of AD-SNARKs and how
they scale with more constraints. Their focus is not on bringing
this technique to constrained devices that are generating sensor
data. Lastly, we present our approach which achieves multiple
trust metrics in comparison to other techniques. The details on
how our approach achieves them is explained in section VI-B.

IV. BACKGROUND

This section provides a background on the building blocks of
our approach; Public Key Infrastructure (PKI), TEE, SNARKs,
and time series statistics.

A. Public key infrastructure

PKI is a system that is used to create, manage, store,
and distribute digital certificates of entities in a networked



Technique Name Trust Metrics No. of sources Arch. type Oracle Type H H − h

RERUM [2] PP, SSR, IT, DPT single, multiple centralized ✘ ≥ 2 0: IT, DPT

Javed12 [3] DPT multiple ✘ ✘ ✘ ✘

Sicari13 [4] TRD, DPT, DFMT (only fusion),
SSR (Partial)

multiple ✘ ✘ ≥ 3 0: DFMT, PP

Witnet [5] DT, DTCT single, multiple decentralized consensus 2 1: DTCT

Astrea [6] DT single decentralized consensus 2 1: DT

TownCrier, Chainlink [7], [8] DTCT, IT, SSR single, multiple decentralized hardware + software 2 1: DTCT

Provable [9] DTCT, SSR single centralized software 2 1: DTCT

Zk-AuthFeed [10] DT, IT, PP single decentralized software 2 1: 0: IT

Our Approach DT, SSR, DPT, IT, PP (Partial) single decentralized hardware + software 2 0: All

Table I: Evaluation of the current state of the art in trust techniques in comparison to our approach. Trust metrics are based on the work of
the authors in [1] and is extended by our trust metric DT introduced in subsection II-A. The table highlights the number of data sources and
the architecture type each approach adopts. It also presents the oracle type if applicable. Lastly, for each approach, the table presents the trust
metric with the minimum closeness to source, shown in the last column.

application [11]. The key goal of the PKI system is to provide
a trustworthy process of binding the public key to an entity.
It is achieved with the issuance of X.509 certificates to the
entity with the digital signature of the Certificate Authority.
PKI enables us to achieve identity trust by authenticating the
data packets. Ensuring us that the data is coming from a trusted
source by verifying the signature and the certification path.

B. Trusted Execution Environment
For mobile or low powered devices, ARM TrustZone

(ARM TZ) is the industry leader by the ARM Holdings [12].
Since most of the constrained device are powered by ARM
microcontrollers ARM TZ is our TEE of interest. ARM TZ
has the concept of a non-secure world and a secure world.
The non-secure world is restricted by hardware to access the
secure world. A codebase for critical tasks, typically called
trusted computing base (TCB), is loaded inside the secure
world. Creating an extra layer of defense from the outside
world while the code is executed. Our approach is not limited
to the use of ARM TZ, any other equivalent technology can
be used. However, to develop trust in the sensor readings from
as close to the source as possible, the presence of a TEE on
the sensor node is imperative.

C. Succinct Non-Interactive Arguments of Knowledge
SNARKs are a category of non-interactive proving systems

under the umbrella of Zero-Knowledge Proofs (ZKPs). In our
approach, we use AD-SNARKs [13], which is a variant of this
proving system based on BCTV14 [14]. SNARKs are a two
party system, where one party is the prover. Which creates
proof of knowledge of a mathematical calculation to the other
party known as the verifier. The mathematical calculation is
agreed upon in the generation phase of the SNARKs. The
generator algorithm produces two keys; circuit evaluation key
EKC and circuit verification key V KC . They are used to
generate and verify the proofs of the mathematical calculation,
respectively. Both of these keys do not have to be confidential
and not restricted to any particular entity. Anyone can use
these keys to create and verify proofs of the mathematical
computation they are set for.

The state-of-the-art SNARKs protocol, uses an optimiza-
tion and reduces the computation in circuits to the form
called quadratic arithmetic program (QAP). Which is a tuple
(A⃗, B⃗, C⃗, Z) of size m and degree d over a field F, where
A⃗, B⃗, C⃗ are three vectors each of size m + 1 polynomials
in F≤d[z] and Z ∈ F[z] has degree of exactly d. Here F[z]
denotes the ring of univariate polynomials over the field F and
F≤d[z] denotes to the subring of polynomials of degree ≤ d.
This is known as the circuit satisfaction, which is as follows:

Definition 1: The satisfaction problem of size-m
QAP (A⃗, B⃗, C⃗, Z) is a relation R(A⃗,B⃗,C⃗,Z) of pairs (x⃗, s⃗) such
that (i) x⃗ ∈ Fn, s⃗ ∈ Fm and n ≤ m; (ii) xi = si for i ∈ [n] and
(iii) the polynomial Z(z) divides the following one completely:

(A0(z) +

m∑
i=1

siAi(z)) · (B0(z)

+

m∑
i=1

siAi(z))− (C0(z) +

m∑
i=1

siCi(z)).

(1)

The relation R(A⃗,B⃗,C⃗,Z) language is denoted by L(A⃗,B⃗,C⃗,Z).
Entry point to the SNARKs is through the language called

Rank-1 Constraint System (R1CS) (commonly known as
constraints or constraint system), which are a group of vectors
f⃗ , g⃗, h⃗. Each vector f⃗ , g⃗ and h⃗ represents the operand according
to the decided mapping from the flattened statements. The
R1CS is transformed into vector of polynomials turning the
circuit satisfaction problem into the QAP satisfaction problem,
represented in equation 1. Mathematical circuit represented in
the form of constraints are turned into polynomials. Which
are eventually used to prove the honest computation of the
constraints.

For our approach, we want our sensor data to be digitally
signed at the source which would help us achieve IT trust
metric. Therefore, we use the AD-SNARKs [13] variant, since
it allows signing of data sources used in constraints. The authors
of AD-SNARKs incorporated the signing and verification
process of the signature as a part of the SNARKs protocol.



Consequently, achieving performance roughly equivalent to the
original SNARKs protocol.

D. Time Series Statistics

We use statistical measures that provide information about
streaming data from the sensor attached to the constrained
device. The measures which we use for our approach are
inspired by the RERUM project [2] and are introduced below.

a) Exponential Moving average: The simplest measure
that can be calculated is called the mean of the given data.
However, this measure when calculated for the entire lifetime
of the sensor node would not prove to be useful because the
environment is constantly changing and the past values tend
to lost their importance. Therefore, a measure that is able to
capture this change over a predefined window of past values
is called moving average. Exponential smoothing is applied to
moving average resulting in a smooth trend line which follows
the data from the sensor, avoiding the erratic behavior and
we end up with a measure called exponential moving average
(EMA). It is calculated according to the following equation.
EMA = x̄t = ηxt + (1− η)x̄t−1.

Where η is the smoothing factor 0 < η < 1, and is usually
in the order of 0.05 or smaller.

b) Sliding Variance: A measure that would provide us
with the information about the spread of the data set would be
by calculating the variance. The exponential moving average
xt introduced in the last paragraph is a stream where we do
not have a fixed data set. Therefore, we use a streaming value
that provides the spread of the data in the chosen window. This
measure is called sliding variance (SV) and is described by the
mathematical relationship SV = x̂t = η(xt−x̄t)

2+(1−η)x̂t−1

Using both of these statistical measures, we can represent the
streaming data in a condensed form that is suitable for many
applications such as forecasting of the underlying data. Based
on these statistical measures we develop our constraints for
AD-SNARKs. If there is a requirement then this approach can
be extended to other statistical measures as well, consequently
extending the number of constraints for the AD-SNARKs
system. As an example, for a seismograph a peak detection
computation might be more relevant and the relevant constraints
can be developed for it.

V. OUR APPROACH

In this section, we use the building blocks from the previous
sections to explain our approach of introducing multiple layers
of trust in the data from the single-sourced sensors.

A. Reading sensor value securely

We secure the reading of sensor data right from the source
by utilizing the TEE, specifically the ARM TZ. It allows the
configuration of General Purpose Input Output (GPIO)s and
associates them with a particular world (secure or normal).
Reading the sensor value directly in the ARM TZ enables us
to minimize the closeness factor to 0 with respect to SSR trust
metric. To explain the process of reading the sensor values
better, we have a high level block diagram of the physical
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Figure 3: Plot showing step-wise exponential moving average for
sensor samples. It has a window of N = 10 samples per step j. With
each step shown as red vertical dashed lines.

architecture of the sensor node in Figure 1. The TEE is made
up of the secure chunks of memory called the secure world,
attached to the micro-controller core, which runs the code from
the secure memory locations. The sensor is physically attached
to one of the GPIO pins of the micro-controller. Which is
configured to send the contents of the GPIO register to the
secure world. The software to read sensor values from the
sensor should be part of the TCB so that it is executed from a
secure memory location, isolated from the normal malicious
world. The configuration and development for the TEE depends
on the micro-controller of the constrained device, therefore
it would vary with the choice of micro-controller. Our focus
was on ARM TZ therefore we found this tutorial to be quite
helpful [15].

B. Developing the constraint system for AD-SNARKs

In the previous section (IV-D) we introduced the time
series statistics which are used to develop the constraints for
AD-SNARKs. We can use the mathematical representation
of EMA and SV directly to create a constraint system for
AD-SNARKs. Ending up with a total of 11 constraints and
we call this constraint system as constraint system 1 (CS1).
However, if we want to increase the data density, the use of
this constraint system significantly increase the packet size and
the time required to create proofs. Data density is defined as
Data density = kxt/m. Here k is the number of sensor
readings, xt is the sensor readings and m are the number of
packets sent from the sensor node. The units of data density
for 1 reading per packet are defined as 1 rds pkt−1.

In order to mitigate these issues we use an alternative
representation of the same statistical measures in the form
of summation notation. This enables us to provide the same
information in a step-wise fashion and achieve a higher data
density in the packets. There is data loss in between steps
but this is not an issue because this provides partial privacy
preserving capabilities since all of the sensor data never leaves



the constrained device. The concept is visualized in Figure 3,
where the step-wise exponential moving average (SEMA) of
the streaming sensor samples are shown. Instead of calculating
the EMA at every sampled value, we accumulate the sensor
samples depending on window we want to have in each step
and calculate the SEMA from these values. The EMA can be
transformed in to SEMA and it is represented with the equation
below. Where N are the number of sensor samples and j is
the step number.

x̄jN =

N−1∑
i=0

η(1− η)ix(jN−i) + (1− η)N x̄(j−1)N (2)

Similarly for SV we have step-wise sliding variance (SSV)
which is represented as follows:

x̂jN =

N−1∑
i=0

η(1− η)i(x(N−i) − x̄(N−i))
2 + (1− η)N x̂(j−1)N

(3)
To develop our constraint system we expand our equations

into flattened statements. These are three operand based
equations, such as a + b = c, with a mathematical (+) and
an equality operator (=). Using the equations for SEMA and
SSV above, we reach at the following flattened statements:

etaWindow ∗ x̄t−1 = sema1

xFused+ sema1 = seMovAvg

etaWindow ∗ x̂t−1 = ssv1

avgSqFused+ ssv1 = sSliV ar

(4)

Once we have the flattened statements we need to take care
of two important aspects before we reach our R1CS compliant
constraints. Firstly, there should be no linear dependencies
between the flattened statements. If it exist then only one
such equation should be present. Secondly, the variables and
constants for the constraint system need to be integers because
they are elements of the prime field Fp. Therefore, we need
to scale our flattened statements for our variable because
sensor data is represented in floating point. The final scaling
is represented by a term which we call scaling factor (SF),
which is required by the consumer to get to the actual value
with decimals.

Once we ensure these two aspects, we get the constraint
system in the R1CS form as an input for our AD-SNARKs
generator algorithm. Our optimized constraint system (CS
Optimized) for the equations above is given below:

etaWindow ∗ x̄t−1 = sema1

xFused ∗ 100 = scaled xFused

(scaled xFused+ sema1) ∗ 1 = seMovAvg

etaWindow ∗ x̂t−1 = ssv1

avgSqFused ∗ 100 = scaled avgSqFused

(scaled avgSqFused+ ssv1) ∗ 1 = sSliVar

(5)

Figure 4: An illustration showing the lifecycle of an IIoT device after
its production. The Manufacturer is trusted to run the trusted setup of
AD-SNARKs and places the circuit evaluation key EKC in the device.
It places the circuit verification key V KC and SF in the blockchain.
The manufacturer also issues a PKI certificate for the public key of
the IIoT device so that the data source can be authenticated. Once the
IIoT device is transported and configured, it starts to gather sensor
data and pushes it to the consumer along with the proofs.

Please note that the colors of each operand is based on the
vectors of R1CS system as it was introduced in the SNARKs
introduction in Section IV-C. The variables in bold are public
output values and would be transmitted in the packets for the
consumer. They are accompanied by the authenticated data
and a proof, which would prove the provenance of data and
verification of the computation respectively.

C. System Overview

In this section, we describe our approach using the system
architecture in Figure 4 and how all these components work
together. We have multiple parties in the system (similar to
our problem in the introduction I): 1. Manufacturer of the IIoT
device, 2. PKI system operated by the manufacturer, 3. the
IIoT device, 4. the consumer of data from the IIoT device,
which in our case is the blockchain and 5. the user which
needs trustworthy data. The entire process is divided into 7
steps which are show in Figure 4 and are explained below.

a) Step 1: The entire process starts with the manufacturer
of the device who is the root of trust in our system. The
manufacturer burns the device with its initial TCB. The
authentication keys should be generated on the device inside
the secure world, only the public key leaves the secure world
which is required as an input for the trusted setup of AD-
SNARKs. This way the private key never leaves the secure
world and consequently its leakage is prevented. Manufacturer
executes the trusted setup of AD-SNARKs, which generates
circuit evaluation key EKC and circuit verification key V KC

for the CS Optimized that we have defined in Section V-B.
The manufacturer sends the circuit verification key V KC , SF
and the authentication public key to the consumer (blockchain)
so that they are available for all interested parties to verify the
proofs and get the trustworthy values of SEMA and SSV.

b) Step 2: The PKI service issues an X.509 certificate to
the device. The authentication public key is embedded in the



certificate so that any party communicating with the device can
verify that it is an authentic device from a trusted manufacturer.
This public key is also utilized in verifying the proof itself
which would be available at the consumer and the end user.

c) Step 3: The IIoT device is transported to the field
where it is deployed. It is usually connected to an IoT gateway
(which is not shown in the diagram for brevity). Once the
device is active and configured to connect to the consumer, it
starts reading the sensor data directly inside the TEE on the
device.

d) Step 4: The input values for the proving algorithm are
signed within the TEE and then passed to the normal world,
where the signature is verified and if this check passes then the
proof is generated using the circuit evaluation key EKC . The
proof, authenticated data and the public values of SEMA and
SSV are pushed to the consumer (blockchain). If the device is
not powerful enough to compute the proof, then this process
can be shifted to the more powerful IoT gateway. The sensor
device only needs to provide the authenticated data which
would be used as an input for proof generation at the gateway.

e) Step 5: Using a micro-service at the consumer end (or
smart contracts in the blockchain), the device is on-boarded
by validating the signature on the certificate of the device and
performing a proof of private key possession. The signature
on the certificate can be validated by requesting the public
key of the manufacturer from the PKI service exposed to the
consumer. On-boarding needs to be done only once. Once the
device is authenticated, the consumer can verify the proof by
using circuit verification key V KC , public authentication key
and the authenticated data. If this check passes, it stores the
current proof along with the public values for any interested
party to read. If an online connection is not available, the
proofs can be stored at the gateway, or on the device for later
verification.

f) Step 6: This is an optional step for the end user that
wants to on-board the device in its system. The device can be
on-boarded by performing the actions written in Step 5.

g) Step 7: The end user pulls the proof, circuit verification
key V KC , authentication public key (of device) and the
authenticated data to verify that the public SEMA & SSV
values available at the consumer. It uses this data to authenticate
the sensor reading to determine that the source is trustworthy.
It then verifies the proof to ascertain that the mathematical
operations on the sensor readings were done properly. The
details of the algorithms used and their implementation are
explained in the section VI.

Applying this approach to our example problem of the
”vaccine transport” from section I we can highlight the benefits
of our approach. The end user from our system overview in
Figure 4 would be the party purchasing the vaccines. By using
our proposed solution for recording the temperature of the
shipment throughout its journey, the end user will be able to
determine conclusively how the temperature varied throughout
the journey by verifying the proofs at each step along with the
public values of SEMA and SSV. Having the proof enables us
to achieve the trust metric of DT, where any entity can create
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Figure 5: This bar graph compares the payload sizes as trust
techniques are added to the packet. Each payload has a data density of
10 rds pkt−1. From left to the right, the bars represent, the size of the
payload with no trust metrics applied. Followed by addition of data
perception trust, and then identity trust is added to the payload. Lastly,
we compare our payload of our CS Optimized with the payload of
CS1. The exact contents of packets are explained in Subsection VI-A.

or verify the proofs using the circuit evaluation key EKC and
circuit verification key V KC . Furthermore, the end user can
be certain that the temperature readings were coming from
a trusted device because input data to SNARKs is signed by
the prover and verifiable. With the use of TEE, signing of
sensor data and providing proofs of computation we are able
to provide multiple layers of trust in our approach.

VI. IMPLEMENTATION DETAILS AND EVALUATION

A. Implementation details

Each trust technique was implemented and tested on a
general purpose laptop running Ubuntu 18.04 LTS. The
specifications of the laptop are Intel Core i7-7500U, 2.7GHz,
8GB RAM and x64 Architecture. The sensor was a simulated
temperature sensor that was used as an input for all trust
techniques. Furthermore, no data transmission timings were
measured because our approach is packet based but protocol
agnostic. Lastly, all implementations were carried out in C/C++
and compiled using the gcc compiler.

We compared the packet’s payload sizes and the timing
performance of our approach with other common trust tech-
niques that we explored in our literature review. For each trust
technique we construct the payload with the data represented
as strings and a data density of 10 rds pkt−1.

For control we use a payload with no trust metric (NTM)
applied and it is constructed with ten consecutive values
from the sensor stacked in front of each other. The first trust
technique, that is commonly used, is to add DPT. The payload
has ten consecutive EMA and SV values stacked in front of
each other. The state of the art is to add IT on top of the
previous trust technique as shown by the authors in [2]. This
is achieved by adding a digital signature to the payload. For



Moving
Average (ns)

Sliding
Variance (ns)

Auth. (ms) AuthVer. (ms) Proof Gen.
(ms)

Proof Ver. (ms) Total (ms)

DPT 512 563 ✘ ✘ ✘ ✘ 0.251

DPT & IT 444 465 .63 1.57 ✘ ✘ 2.452

CS1 5433 7256 27.24 28.03 98.63 362.92 517.084

CS Optimized 5157 34080 2.85 3.07 7.94 37.28 51.407

Table II: Comparison of the timing performance of each trust technique introduced in subsection VI-A. Every timing measurements started
from the measurement of reading data from the simulated temperature sensor till the packet’s payload construction and it is an average of ten
values. The specification of the laptop are: Intel Core i7-7500U, 2.7GHz, 8GB RAM and x64 Architecture. Timing of data transmission was
excluded from the measurements.

signing we use Ed25519 elliptic curve signatures so that we can
make a fair comparison with the use of AD-SNARKs because
they also use elliptic curve signatures for authentication.

Now coming to our approach with the CS Optimized,
the payload includes the public values of SEMA and SSV
calculated with ten consecutive sensor readings. Furthermore,
it includes the authenticated data and the proof generated
with the AD-SNARKs algorithm. We also compare our CS
Optimized to the CS1 to show the improvement that we are
able to achieve.

The library used for implementing AD-SNARKs is libsnark
[16] from Succinct Computational Integrity and Privacy Re-
search (SCIPR) lab. This library has multiple variants of the
SNARKs protocol. The GROTH 16 [17] protocol achieves
the best performance but we are dependent on BCTV14
[14] because AD-SNARKs extends on this implementation.
However, the timing performance improvements by using the
GROTH 16 would be minimal for us because of the low number
of constraints.

Furthermore, the pairing operation used by AD-SNARKs
protocol is based on elliptic curves. Changing the elliptic curve
also influences the sizes of the payload. Since our approach
is a proof of concept, we focus on the curve that provides
the maximum bit security. We used the Barreto Naehrig curve
which provides us with 128 bits of security. In comparison to
other curves, it produces the largest payload and slower timing
performance.

B. Evaluation

The sizes of the payload with each trust metric being applied,
is shown in Figure 5. Going from the left bar to the right, we
can see that as more layers of trust are added the packet size
gradually increases. With our approach using the CS Optimized
we get multiple layers of trust. Namely they are DPT, IT and
DT.

Furthermore, the Figure 5 also compares the payload sizes
of the two constraints systems CS1 and CS Optimized. We can
see that our CS Optimized achieves a tenfold size reduction
compared to CS1. Therefore, our CS Optimized is much well
suited for constrained devices. With an additional 779 Bytes,
our approach offers another layer of trust on top of DPT &
IT. We do want to point out that there is data loss in between
steps but this is not an issue because this provides a partial
privacy preserving capabilities because the exact sensor values
never leave the constrained device.

In our payload for CS Optimized, the major chunk is taken
by the authenticated data elements. This takes up 576 Bytes
of the payload. The proof for calculating the public values
of SEMA and SSV is of constant size, take up slightly less
than 383 Bytes. Lastly, we have the public values for which
we have designed this protocol. Each take up 32 Bytes, hence
a total of 64 Bytes. Bringing the total payload size to 1023
Bytes.

The timing performance of the aforementioned trust tech-
niques is tabulated in Table II. The sensor read times were
similar for all of them because we were aiming at a data density
of 10 rds pkt−1 and it amounts to roughly 250 ms. This would
be the time required for NTM but it is not shown in the table to
save space. Furthermore, the measurement of time began with
the first sensor data read and ended when the complete packet’s
payload was constructed for a particular trust technique. In the
table the time values are an average of ten values to average
out the variations by the operating system.

By comparing the payload size and the timing performance
of the trust techniques we can see that as another layer of trust
is added to the communication packet, the time to construct
a packet and the payload size increases. With our proposed
approach of CS Optimized, it would need an additional 779
Bytes and an extra time of 11.68ms on top of the state of the art
trust techniques. With this additional cost we get a huge benefit
of adding another layer of trust, which is (DT). That provides,
any party reading the data, additional trust in the correctness
of computation of the DPT trust metrics. Additionally, with
the use of TEE in reading the sensor data we are also able
to achieve another layer of trust which is SSR. We can see
that our approach enhances the trust in the sensor data in the
scenario where the sensors are operated by other parties and
can be potentially malicious.

In our approach we were able to achieve the following trust
metrics with the closeness to source factor:

• Achieving SSR with H − h = 0: Our approach promotes
the use of a TEE. The ARM TZ on the ARM M-23 micro-
controller enables us to achieve SSR trust metric right
from the source.

• Achieving DPT with H − h = 0: By calculating SEMA
and SSV on raw sensor data. This is computed on the
sensor node itself.

• Achieving IT with H − h = 0: With the help of the PKI,
we are able to achieve the trust metric IT right at the



source because the public values are signed inside the
TEE.

• Achieving privacy preserving (PP) (partial) with H −h =
0: The way the constraint system is designed, we are able
to fuse together the consecutive input values xt, therefore
making it difficult for the attacker to find the fine-grained
values. This is helpful in scenarios where the sensor data
is measuring private data such as the power consumption
of an apartment.

• Achieving DT with H − h = 0: The proof generation
lets us achieve the trust metric of DT because it is able
to provide any party with a proofs that ensures proper
computation. The proof can be generated at the device
achieving the closeness to source of 0. If this trust metric
is computed at the gateway or at a later stage then the
closeness to source would be 1 or higher depending on
the hop where it is computed.

Our approach shows how SNARKs implementation can be
made feasible for constrained devices. However, it is not yet
fully portable to devices that cannot run an operating system.
The libsnark library [16] that we use, is written in C/C++
language but it cannot be ported to micro-controllers because
it uses a number of operating systems helper functions for
memory profiling and timing operations. There is a SNARKs
library for embedded systems, but it does not support the AD-
SNARKs variant and adding its support to the library would
be significant work in itself [18].

The libsnark library does shows that it can be compiled on
ARM processors that are capable of running Linux operating
systems. Hence, we can generate SNARKs on IoT gateway
class processors. However, the AD-SNARKs variant that we
are using, cannot be compiled for ARM processors because
of its dependency on SUPERCOP library requires x86 or x64
processors. Notwithstanding, we did compile our CS Optimized
on an ARM Cortex A53 processor using the BCTV14 SNARKs
variant. We did lose the support for authenticated data but we
were able to measure the performance which should roughly
be equivalent to that of AD-SNARKs. The platform we used
was a Raspberry Pi 3 Model B with a quad core processor
running at 1.2 GHz with 1GB RAM. The platform was running
Ubuntu server 22.04. We recorded a proving time of nearly
60 ms and the verification of proof takes roughly 230ms. This
result conforms to our expectations because as the processing
power reduces, the proving time would increase.

VII. CONCLUSION

In this paper, we aimed to present a prototype for incorpo-
rating trust in a single sourced IoT device. Our approach uses
multiple trust metrics including the use of AD-SNARKs, which
is a variant of SNARKs. We presented an optimized constraint
system that can be used to generate proofs on a constrained
device for the SEMA and SSV statistical measures.

Our approach shows promising results in context of con-
strained devices with proof generation times in the range of
milliseconds. Although, we were unable to port the approach

to a Raspberry Pi 3 completely, our implementation shows the
feasibility and potential of our method.

We expect libraries that are optimized for constrained devices
to appear in the near future, which would enable further
research directions for even better constraint systems.

We believe that we will see a rise in decentralized and
distributed architectures, because of the large number of small
connected devices that are constantly being produced. To
cater to security and privacy concerns in such architectures,
the technology of SNARKs can play a key role as we have
demonstrated in this paper.
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