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Abstract—With the ongoing efforts toward autonomous driv-
ing, modern vehicles become increasingly digital and smart.
Hence, the vehicle architecture including smart sensors, ECUs,
and in-vehicle communication also faces new challenges to
satisfy the ever-changing safety and security requirements. The
complexity of the system naturally exposes many attack surfaces
that demand for sound security solutions to protect the vehicle
from potential intrusions. State-of-the-art approaches such as
intrusion detection and intrusion response systems require lots
of training and testing against various attack scenarios. However,
implementing such attacks in real environments is difficult,
expensive, and involves many legal and safety considerations.
With Simutack, we present an open-source attack simulation
framework that is capable of generating realistic attack scenarios
for comprehensive security testing in the automotive development
process. The framework integrates several classes of attacks, for
instance, smart sensor attacks, V2X attacks, and attacks targeting
the in-vehicle networks, which are all among the most commonly
exploited attack vectors. We evaluate three common attack
scenarios that showcase the applicability and capabilities of our
work. In each scenario, the generated attack data is processed
and returned to the simulation to visualize the attack’s effect on
the vehicle and its environment. Furthermore, a custom autopilot
application demonstrates the attack’s impact on autonomous
driving systems.

Index Terms—Security Framework, Attack Generation, Sim-
ulation, V2X, Connected and Autonomous Vehicle Security

I. INTRODUCTION

In 1986, the German researcher Ernst Dickmanns and
his team presented the VaMoRs project, a first approach to
autonomous driving based on live-captured sensor data and
real-time data processing [1]. This data-driven approach has
proven to be very effective and is, thus, still in use today
albeit in a much more sophisticated and complex fashion.
Many recently deployed algorithms include Machine Learn-
ing (ML) techniques which cope with the large amount of
generated data and the high complexity of current automotive
systems. However, the necessary training of those algorithms
requires lots of training data which is usually quite costly to
acquire in real environments. Furthermore, many adversarial
attacks which were published over the last decade, such as
[2] and [3], have shown that security is also becoming an
increasingly important concern for Original Equipment Man-
ufacturers (OEMs). This observation implies that nowadays
also multiple attack scenarios must be considered and tested
in the development process in order to build resilient and
secure vehicles. The implementation of such attacks, however,
is very expensive and time-consuming. Most importantly, it
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Fig. 1: System overview of our Simutack framework. The
data generation is based on existing simulation environments
that are integrated into our toolkit. The core parts are the
subsequent steps to post-process the data in ECUs, encode it
for network transmission, and apply attacks at all intermediate
stages. Finally, the generated data can be used within external
applications.

also requires a special test environment to account for any
possible safety, legal, and financial risks. Hence, we have
to rely on sophisticated simulation environments instead. Al-
though available automotive simulators like CARLA [4] and
the LGSVL simulator [5] are quite comprehensive regarding
sensor support, these frameworks were not designed to sim-
ulate adversarial attacks against autonomous driving systems.
Connected and Autonomous Vehicles (CAVs), nonetheless, are
very complex systems which comprise various components
such as sensors, Electronic Control Units (ECUs), and commu-
nication interfaces. These components all expose many attack
surfaces and are, thus, potential attack targets which need
to be properly secured. Consequently, there is a great need
for appropriate testing environments which safely generate
realistic attack data for all required components.

In this work, we present Simutack, an attack simulation
framework for CAVs that is able to provide such a safe
environment for comprehensive security tests including the
generation of realistic vehicular data under various attack
conditions as depicted in Fig. 1. In particular, we:

« introduce a modular and open-source framework! that
provides a safe and comprehensive simulation environ-
ment to test adversarial attacks against CAVs (Sec. II),

e cover many automotive attack targets and provide sample

TAccess code and demo videos here: https://github.com/tum-esi/simutack
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Fig. 2: Detailed system architecture of Simutack. The simulated sensor data is sent from CARLA to Simutack, where it traverses
all processing stages before it can be used in external applications. Vehicle control inputs may be returned to the simulation

which allows for closed-loop test scenarios.

implementations of well-known attack vectors including
sensor, network, and Vehicle-to-Everything (V2X) attacks
(Sec. IID),

« provide a scenario-based evaluation of our framework and
validate the generated simulation data by means of three
realistic use cases that were selected due to their high
relevance in current automotive systems (Sec. 1V),

o show the advantages of Simutack’s attack capabilities in
comparison with other existing simulators (Sec. V & VI)

II. SYSTEM ARCHITECTURE

In the following paragraphs, we introduce the system ar-
chitecture and Simutack’s main components in more detail as
shown in Fig. 2.

A. Data Generation

Because Simutack should serve as comprehensive security
framework, it was designed to integrate multiple different data
sources including sources for sensor and communication data.
An important requirement for the simulated data, thereby,
is its real-world viability. This is particularly vital for the
generated sensor data. Therefore, we need to ensure that
some basic constraints are met by all data samples, e.g.,
proper physical models and time causality. Additionally, it is
important to have a single simulation source for all involved
sensors to preserve realism and validity of the data. When
there is an object on the road, for example, its presence
must be reflected in camera, Lidar, and Radar recordings
at the same time. Otherwise, common processing steps like
sensor fusion approaches cannot be supported. The CARLA
simulator [4], which is based on Unreal Engine 4, is a
comprehensive simulation environment that was specifically
designed for that purpose. It is widely used in research and
supports all common automotive sensors, for example, camera,
Inertial Measurement Unit (IMU), Global Navigation Satellite
Systems (GNSS), Radar, and Lidar. CARLA is not directly
integrated in Simutack to maintain the flexibility of leveraging

also other data sources in the future. Therefore, Simutack
rather uses a general abstract sensor model with an additional
CARLA-specific interface implementation. Another benefit of
this abstraction is a possible categorization of all sensors based
on their output data type, i.e., whether the sensor produces
scalar values, vector outputs, or some more complex data
structures. This makes the framework very generic, especially
regarding the addition of new sensors and attacks.

Besides CARLA, which focuses on sensor data generation,
Simutack also integrates further simulation environments to
enrich its capabilities. The SUMO simulation package [6]
serves as plugin for CARLA to facilitate enhanced traffic
control. This leads to more advanced application scenarios,
such as platooning, which can be modeled with our framework,
and also to more realistic sensor outputs. Furthermore, we
leverage the OMNeT++ toolkit [7] to simulate a V2X com-
munication interface. OMNeT++ allows to precisely model the
propagation of wireless data packets considering attenuation,
propagation delay, and other channel properties.

B. Attack Generation

Although the aforementioned simulation environments are
readily available for normal sensor data generation, none takes
potential adversarial attacks into account. Besides the integra-
tion of existing simulators, the introduction of an additional
attack generation layer is, therefore, a major contribution and
a unique characteristic of Simutack. For this purpose, we thor-
oughly analyzed both the attacks and the simulation platforms
in order to successfully integrate the available building blocks
into a unified framework.

Modern vehicles expose many different attack surfaces due
to the heterogeneity and complexity of all comprising compo-
nents and the entire system itself. It is, thus, desirable but also
challenging to find an efficient approach which simulates as
many different attack vectors as possible to develop appropri-
ate countermeasures. Potential attacks may arise form smart
sensors, ECUs, and communication networks alike. From a



data perspective, nevertheless, many attacks have the same
impact on generated vehicular data which enables a respective
clustering. To further elucidate this statement, we look at the
familiar scenario of automotive navigation. The GNSS sensor
captures the vehicle’s current position and sends it via an
internal communication bus to the navigation device. For the
navigation device, it thereby makes no difference whether the
sensor perception or the communication path was targeted
by the adversary. Based on the received data, the device
cannot distinguish where the data was modified. Ultimately,
the ECU simply obtains erroneous position data and, hence,
the navigation fails. With this observation, we define several
attack classes based on the smart sensor’s data type, i.e.,
scalar, vector, or complex outputs and the attack’s effect on
the captured data, which include among others, modification,
injection, and deletion of the data frames. Afterwards, we just
need to implement the finite set of defined classes and map
the variety of desired attack vectors accordingly. With this
approach, Simutack can simulate many smart sensor, ECU, and
network attacks in a consistent and flexible manner that also
allows for straightforward extensions with new classes and
attacks. Further details on the actual attack implementations
are discussed in Sec. III.

C. Data Encoding

Inside the vehicle, there exist multiple different commu-
nication busses to exchange data among sensors and ECUs.
The most prominent representatives are the Controller Area
Network (CAN), FlexRay, and Automotive Ethernet. Each bus
system has its individual characteristics and requires a certain
data encoding based on the respective standards. In order to
achieve compatibility with other systems including physical
Hardware-in-the-Loop (HIL) applications, Simutack offers the
possibility to encode the simulated data accordingly. Thereby,
the generated raw data is simply wrapped or encoded with the
appropriate protocol headers.

Besides the mentioned in-vehicle communication, our
framework further supports the simulation of V2X data to
additionally cover external communication scenarios. In par-
ticular, we use the IEEE 802.11p wireless communication
protocol that is readily available in OMNeT++.

D. ECUs

Another important part in CAV architectures are ECUs
and the respective tasks they perform. ECUs are essentially
embedded computers which have defined Input/Output (I/O)
interfaces and run dedicated software to add certain driving or
comfort features to the vehicle. Because they are in general
interesting attack targets and are required for realistic in-
vehicle communication, Simutack also contains an ECU sim-
ulation approach. We use OS-level virtualization techniques
to implement isolated services that can be interconnected via
predefined network interfaces which simulate the in-vehicle
communication. The system architecture can be preconfigured
with a provided system description to launch the desired
containers and links for each scenario automatically.

III. ATTACK IMPLEMENTATION

After the general introduction of Simutack’s attack genera-
tion approach in Sec. II-B, we now discuss different attack
surfaces and the simulation of related practical attacks in
more detail. The presented attacks cover relevant and well-
known examples from the literature to showcase Simutack’s
capabilities. However, the selection shall not constitute an
exhaustive list of what attacks can be implemented with our
framework.

A. Sensor Attacks

Sensor attacks aim to affect the sensor’s perception of the
physical world in a malicious way. Typical examples are
jamming and spoofing which either prevent any perception at
all or generate bogus sensor readings, respectively [8]. The
actual implementation of such attacks can be quite costly
and problematic in practice as discussed earlier. On the other
hand, applying the characteristic effect of a certain sensor
attack on the captured output data in a postprocessing step
is easy to perform once the effect is known. Therefore, we
analyze the correlation of known sensor attacks, such as [9]
and [10], and the respective changes in the generated output
data. The previously mentioned categorization based on the
data type allows for reusing obtained insights with multiple
sensors. A sensor jam, for example, results in either no output
at all or a default value outside the reasonable measurement
range dependent on the sensor. Constant offsets to the data can
simulate systematic measurement errors that may arise from
additive noise. Spoofed input signals result in arbitrary sensor
readings within the defined perception scope. In addition to
these rather general relationships, Simutack supports also the
simulation of more specific attacks, for instance, the camera
blinding attack discussed in [3]. By pointing some light source
toward the camera, the auto exposure mechanism is disturbed
and too much light is perceived by the camera chip, appearing
as white pixels in the final image. Similar results can be
achieved in simulation with appropriate image postprocessing
steps. An important aspect, however, is to also consider the
inter-frame dependency of this attack. When the vehicle is
moving, two consecutive images result from different camera
angles, while the position of the light source might be fixed in
the scene. This problem can be solved with the use of basic
projection geometry to compute the exact position and size
of the affected pixels in the image to account for the moving
camera.

B. Network Attacks

Once the data is captured, the sensors forward the records to
ECUs via dedicated bus systems. From an attacker’s perspec-
tive, this reduces to a simple network packet transmission, re-
gardless which data or which bus system is utilized. Common
network attacks comprise Denial-of-Service (DoS), message
falsification, and message spoofing attacks. The first attack cat-
egory essentially has similar repercussions as sensor jamming
attacks, i.e., no (meaningful) data reaches the destination due
to packet drops. The second category enables arbitrary mes-
sage modifications including transmission-related bit errors.
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Fig. 3: The autopilot’s internal control logic. We use the
algorithm to evaluate the validity of our simulated attack data.
The captured sensor data is used to calculate vehicle control
inputs which is looped back to the simulation to have a closed-
loop control system. In case of an attack, the effect is directly
visible in the simulation by the captured sensor data.

When spoofing messages, the attacker injects bogus packets
with forged origins to trick the recipient into erroneous actions
or decisions. The mentioned attacks, thereby, apply equally to
in-vehicle communication and external V2X communication,
respectively. Due to the high similarities and the comparable
effect on the output data, in most cases, sensor and network
attacks can be jointly implemented, especially when the data
is used as input to test ECUs and related algorithms.

C. ECU Attacks

A third way of attacking CAVs is by targeting the ECUs. An
attacker can exploit a simple software bug or some other flaw
to take over the unit and control the hosted tasks. Additionally,
a single ECU can serve as starting point to pivot to other com-
ponents via the in-vehicle networks. Despite the large attack
potential, the available implementations and functionalities of
ECUs are so diverse that it seems impossible to find a general
model that covers all the relevant internals and details and
is, thus, beyond the scope of Simutack. Nevertheless, if we
consider an ECU as a black box device and only focus on its
data flow while neglecting the underlying complexity, we are
still able to model the impact of many ECU attacks on other
components. Furthermore, we can use it to validate the effect
of other attacks based on the observed output. For example, if
the attacker can compromise the ECU that detects approaching
traffic signs, which is relevant for autonomous driving and
other control algorithms, this traffic sign information becomes
unreliable. Hence, this attack poses a threat to other systems
inside the vehicle which rely on traffic sign detection and can
be used for a security analysis of the affected components.

IV. EVALUATION

In order to validate our framework and the generated attack
data, we provide a scenario-based evaluation to show the real-
world viability and applicability of Simutack. In the following
paragraphs, we present three selected scenarios that cover a

variety of relevant attack vectors against CAVs which are also
widely discussed in the literature.

A. Autopilot Application

Data validation can be a difficult task because there exists
no general definition of valid attack data. In our case, a
reasonable criterion could be the similarity between simulation
and real data. However, what are good and fair metrics for this
comparison and is genuine reference data always available?
Since there is no general answer for these questions, we
first put the data into a certain context and give a specific
meaning to it before we proceed with the actual evaluation.
In particular, we developed a basic autopilot application that
uses the provided sensor data either directly or after some
processing steps to produce vehicle control outputs that are
returned to the simulation. This allows to monitor the effect
of an applied attack directly in the simulation by means of
the vehicle’s driving behavior and the continuously captured
sensor data.

The autopilot is based on two Proportional-Integral-
Derivative (PID) controllers similar to the idea provided in
CARLA’s controller.py module?. One controller governs
the vehicle’s longitudinal movement, while the other handles
all lateral motions. One major difference to CARLA’s imple-
mentation is that our controllers are purely based on live sensor
and ECU data. Hence, there is no internal information from the
CARLA simulation environment needed, and the autopilot can
be entirely implemented as external application. Also, instead
of random navigation, we provide predefined routes that the
vehicle should follow. The computed steering and throttle
actions are returned to the simulation to create a closed-loop
control scheme as depicted in Fig. 3.

B. Scenario 1: GNSS Attack

In the first scenario, we perform a DoS attack against the
GNSS sensor. The previously introduced autopilot application
uses this sensor to obtain information about the vehicle’s cur-
rent position. Based on the current position and the given target
position, the controller computes a target vector that represents
the ideal driving direction towards the target. The difference
of this direction and the vehicle’s current orientation, which
can be acquired from the IMU sensor, is the error term that
the lateral PID controller uses for its steering control. In the
default case, the target direction is correctly determined which
lets the vehicle properly take the curve to follow the ideal path
(green line) as shown in Fig. 4a. In case of the DoS attack,
the position updates from the sensor stop. Hence, the target
direction cannot be properly computed anymore resulting in
incorrect steering behavior visualized by the red line. Fig. 5
depicts the vehicle’s orientation over time captured by the
GNSS sensor in both the normal and attack case to further
elucidate the impact of the attack.

Zhttps://github.com/carla-simulator/carla/blob/master/Python API/carla/
agents/navigation/controller.py
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Fig. 5: GNSS DoS Attack Scenario. Due to the missing
position updates, the autopilot is not able to properly control
the vehicle. Hence, it crashes into the wall (red) instead of
driving the curve (blue).

C. Scenario 2: Camera Blinding Attack

In the second scenario, we showcase a more complex
attack implementation, namely the camera blinding attack.
For this purpose, we make use of the autopilot application
from Sec. IV-A but with a focus on the longitudinal controller
instead. According to Fig. 3, the vehicle’s current speed is
adapted to match the last applicable speed limit that was
detected by the appropriate ECU. The implemented detection
mechanism is a two-fold approach. First, the traffic sign is
extracted from a provided camera image using the Yolov4
object detection framework [11]. In a second step, the sign’s
text is read by means of the optical character framework Easy-
OCR [12] to obtain the actual speed limit. In the default case,
the algorithms can successfully extract the speed limit and
the PID controller adapts the vehicle’s velocity accordingly.
The additional camera blinding attack which is visualized
in Fig. 4b, however, prevents the Yolov4 framework from
detecting the traffic sign. Hence, also no speed limit can be
extracted from the provided image. Consequently, the autopilot
fails to respect the speed limit in force and continues at the
higher speed. Fig. 6 visualizes the two stated cases.
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Fig. 6: Camera Blinding Attack Scenario. The autopilot aims
to match the vehicle’s current speed (CS) to the computed
target speed (TS). In case of the camera blinding attack, the
appropriate speed limit cannot be extracted from the provided
image which results in ignoring the speed limit.

D. Scenario 3: V2X Attack

In the last scenario, we illustrate the impact of a message
falsification attack on the V2X communication between sev-
eral vehicles in a platooning application. The attack is imple-
mented on a platoon consisting of three connected vehicles,
where the malicious attacker is also part of the platoon. In
this constellation, all the vehicles follow the leader’s driving
instructions, which it transmits using V2X communication
based on the IEEE 802.11p wireless standard.

In the reference case, the leader vehicle detects a roadblock
sign on the current driving lane and decides to switch to
the lane to its left. Consequently, it also communicates the
new lane information to all its succeeding vehicles which
follow as expected. In the attack case, the leader also shares
the information as previously, however, the second vehicle
in the platoon turns into the attacker. It alters the received
V2X packet to stay in the initial lane before it broadcasts the
malicious packet further to the victim, i.e., the last platoon
vehicle. On receiving the falsified driving information from the
attacker, the victim mistakenly continues to drive on the same
lane and eventually collides with the blocking object. Fig. 7
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Fig. 7: V2X Attack Scenario. In the attack case, the victim is
provided with malicious V2X messages, misses to change to
lane 2 (circle) and eventually crashes into the roadblock on
lane 1 (triangle).

visualizes the portrayed scenario. In particular, it shows the
distance of each vehicle to the roadblock and their respective
driving lane information over time.

V. DISCUSSION

The presented scenarios showcase an exemplary usage of
Simutack and, most importantly, show that our framework is
able to simulate appropriate attack data to create a realistic
but safe testing environment for CAVs. The security of in-
dividual components can be safely evaluated by generating
the desired attack data and analyzing the resulting output
and, particularly, its effect in the simulation environment.
If the behavior is not aligned with the expectations, the
component to be tested is not yet sufficiently secure against the
simulated attack. Furthermore, CARLA is a well-established
tool which is widely used in academia and the industry and
is considered to generate trustworthy data. Since Simutack
relies on CARLA for its sensor data, the generated data is also
trustworthy. Nevertheless, while using the simulated sensor
data, we additionally propose a comprehensive attack layer
in our framework which can simulate highly relevant attacks
against CAVs. This extension turns out to be a significant
improvement over current automotive test environments such
as CARLA and comparable simulators regarding the design and
testing capabilities of secure autonomous systems.

VI. RELATED WORK

As previously mentioned, many simulators are used in the
development of autonomous driving systems to efficiently
analyze many driving scenarios within a safe, risk-free, and
flexible environment [13]. These simulators can be divided into
multiple groups based on the part of the automotive system
that they simulate: 1) Simulators that focus on various sensor
suites including Lidar, camera, GNSS, etc. (e.g., CARLA [4]
and LGSVL [5]), 2) simulators that target in-vehicle networks
(e.g., VEOS [14] and CANoe [15]), and 3) simulators that

Table I: Comparison of Simutack with other systems.

Solution Systaems Att;cks Open Source

° 3 L 3

T g~ 1 g~

it B
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LGSVL[5] O @ O O O O o
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[17] O @ O O @ O  J
[18] O @ O O @ O O
[19] O O @ O 0O e D!
PASS [20] O @ O O @ O O
[21] ® O O @ O O O
[22] O ®© @€ O @ o [
Simutack e 6 6 6 0 O [

O no support, D partial support, @ full support

! Data-set was shared only.

cover the communication with the outside world (e.g., Veins
[16], SUMO [6], and OMNeT++ [7]). The simultaneous sim-
ulation of multiple system parts requires the integration of
many individual tools. However, this integration also involves
a considerable amount of time and effort.

Furthermore, all these simulation environments were not
designed to cover adversarial attacks against autonomous driv-
ing systems. Recently, many researchers have started to tackle
this gap by using several platforms to simulate attacks against
various components of a smart vehicle. In [17], the authors
extended the CARLA driving simulator to implement security
attacks against GNSS sensors. In [18], Nesti et al. utilized
CARLA in order to implement and evaluate Adversarial Patch
Attacks. Finally, Igbal et al. proposed a methodology for
generating attack data for V2X communication using the
Eclipse MOSAIC simulation framework [19]. This framework
uses two vehicular simulation tools, namely OMNeT++ and
SUMO, to simulate the attack and visualize it in 2D.

In Table I, we compare our proposed work with some of
the solutions presented above. Unlike other existing solutions
(e.g., [20], [21], [22], etc.), our framework is not limited to one
perspective but addresses different aspects of the automotive
system including in-vehicle networks, smart sensors, and V2X
communication. Additionally, it supports a variety of relevant
attacks that can target all these system parts. Finally, our
solution is an open-source implementation, so that it can also
be used by other researchers.

VII. CONCLUSION

In this work, we present a comprehensive attack simulation
framework for connected and autonomous vehicles. We incor-
porate multiple attacks against different parts of autonomous
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