
RobWoT: Generating Real-Time Digital Twin
Simulations for the Robotic Web of Things

Fady Salama1, Zucheng Han1, Ege Korkan2, Sebastian Käbisch2, Sebastian Steinhorst1
1 Technical University of Munich, Germany, Email: {fady.salama, zucheng.han, sebastian.steinhorst}@tum.de

2 Siemens AG, Germany, Email: {ege.korkan, sebastian.kaebisch}@siemens.com

Abstract—A cornerstone of the Fourth Industrial Revolution
is Internet of Things (IoT) technologies, which enable unprece-
dented connectivity in industrial settings, facilitating novel ap-
proaches for industrial automation. However, the high fragmenta-
tion in the IoT ecosystem hinders the potential of IoT technologies
in the industry. To solve this problem, the W3C proposes the Web
of Things (WoT) and its Thing Description (TD), a JSON-LD
document for describing the API exposed by a device, and the
inputs and outputs of each interaction. In contrast to simple
devices, describing the capabilities of robots and accurately
depicting their workspace using the TD is a significant challenge
and has to be done manually. Furthermore, there is a lack of
simulation frameworks that help validate Web-enabled robots.
In this paper, we introduce RobWoT, a method and an open-
source simulation framework for automatically generating WoT-
compliant Digital Twin (DT) and its corresponding, annotated
TD using only a Unified Robotic Description Format (URDF)
as an input. These DTs can be used to preemptively test a
robot’s movement command to prevent undesired behavior or
collisions, enabling simulation-in-the-loop scenarios. We evaluate
the execution time of our generation algorithm and the accuracy
of a DT’s movement compared to a physical robot. Our evaluation
shows that our generation method scales linearly with collidable
artifacts in the simulation scene and that our DT deviates only
6.8 mm on average from the target position. Our proposed
method makes developing and verifying Web-enabled robotics
applications more standardized, streamlined, and easy to set up.

Keywords—Internet of Things, Web of Things, Robotics, Dig-
ital Twins, Simulation

I. INTRODUCTION

Adopting Internet of Things (IoT) solutions in industrial
applications is a cornerstone of Industry 4.0 and its vision
of smart, interconnected, and digitally-enabled factories, as
argued by [1]. Evidently, IoT-enabled robots are significant
actors in such smart factories, providing innovative options
for designing manufacturing processes by utilizing the ability
to control such robots remotely using established internet
technologies. Furthermore, IoT-enabled robots open the door
for manufacturing data accumulation and collection based
on integrated sensors, which can be used to optimize the
manufacturing process to increase manufacturing efficiency
and minimize cost and errors. As such, the robotics industry is
forecast to significantly expand in the following years [2], with
different companies offering different smart robot solutions
and services. However, this results in high fragmentation in the
IoT landscape in general and in the Internet of Robotic Things
(IoRT) more specifically, minimizing the interoperability of
such devices and services, which in turn defeats the benefit

RobWot Simulator 

< >
URDF

< >
URDF

Robot Simulator 

1) Import 

3) Enhance bi-directional
communication3) Generate 

4) Interact
& Leverage 

WoT Server 

2) Generate
Workspace 

in 
Simulation 

{ }
TD

STL

links

Fig. 1: In this paper, we introduce RobWoT, a method and an open-source
simulation framework for automatically generating Web of Things (WoT)-
enabled Digital Twins (DTs) and their corresponding Thing Description (TD)
using only a robot’s Unified Robotic Description Format (URDF) file as
an input. After 1) importing the URDF in the Coppeliasim simulator, 2)
we generate the workspace based on the simulation scene, and 3) use the
workspace information alongside the information in the URDF to generate a
server for controlling the DT, and the corresponding TD that links both the
URDF and workspace STL file. 4) The DT can be, e.g., used to develop, verify
correct behavior to avoid collisions and simulation-in-the-loop applications.

of using smart robots and minimizes the impact that can be
gained by utilizing such solutions.
[3] argues that one way to solve this issue is to utilize
Web technologies to ensure interoperability on the application
layer of the Internet Protocol (IP) stack, where data formats
and communication protocols are standardized. The Semantic
Web, an extension of the Web, also provides the means
to uniformly describe data in a machine-readable fashion,
facilitating semantic reasoning, which robotic systems can
utilize to plan and execute actions autonomously. [3] also notes
that this approach has not been used to its full potential, as
most services provided by robots in literature are not exposed
as an Application Programming Interface (API) nor are they
described using semantic technologies.
As such, the World Wide Web Consortium (W3C) proposed
the Web of Things (WoT), a set of standards that facilitate
the interoperability between IoT devices and services, called
Things, in the context of this paper. At the core of these



1 {"title": "Robot with 2 DoF",
2 "links": [{ "rel": "model",
3 "href": "http://example.com/model.urdf",
4 "type": "application/urdf+xml"}],
5 "properties": {
6 "cartesianPosition": {
7 "type": "object",
8 "properties": {
9 "x": {"type": "number", "minimum":

-5,"maximum": 5},↪→

10 "y": {"type": "number", "minimum":
-5,"maximum": 5}},↪→

11 "forms": [{"href": "http://rb/pos"}]}},
12 "actions": {
13 "moveToCartesianPos": {
14 "input": {
15 "type": "object",
16 "properties": {
17 "x": {"type": "number", "minimum":

-5,"maximum": 5},↪→

18 "y": {"type": "number", "minimum":
-5,"maximum": 5}},↪→

19 "forms": [{"href": "http://rb/move"}]}}}}

Listing 1: This is an example of a Thing Description (TD) for a robot arm with
two Degree of Freedom (DoF) and is controlled using Inverse Kinematics (IK).
The robot exposes one property affordance called "cartesianPosition"
(Lines 5-11) and one action affordance called "moveToCartesianPos"
(Line 12-19). Reading the property would yield an object containing the x
and y coordinates of the end-effector, each being a number between −5 and
5. "moveToCartesianPos" expects an input with the same format.

standards is the Thing Description (TD), a JSON-Linked
Data (JSON-LD) document that is both human- and machine-
readable and that describes the API provided by any Thing
regardless of which application layer protocol it uses for its
communication.

Problem Statement: The W3C TD enables the amal-
gamation of robotics and Web technologies, simplifying the
process a developer needs to develop a working solution by
providing all the information needed to communicate with a
robot that exposes its services as a Web API and provides a
JSON-Schema-based solution for describing input and output
payloads. However, robots provide a unique challenge when it
comes to describing their capabilities using the TD, as the
JSON-Schema-based approach is not expressive enough to
describe the limitations on the input and output values for
controlling a robot using Cartesian coordinates and Inverse
Kinematics (IK). Furthermore, there is a lack of simulation
and testing frameworks that target Web-enabled robots and
robot arms without a cloud connection. Spinning up such
simulations is currently manual and arduous, but it is essential
for testing robotic applications with regard to their correctness
and safety.

Contributions: In this paper, we aim to address the
shortcomings mentioned above by introducing RobWoT, a
set of methods and an open-source framework that is capable
of generating a fully functioning DT that can run in real-
time or faster than real-time and can be used to calculate the
workspace of a robot arm in a scene and generate an STL file
describing the workspace. Furthermore, the DT exposes the
same functionality as the actual device and can be used for
development to verify the correctness of the Cartesian inputs

Fig. 2: Describing the workspace of a robot arm is a non-trivial task. We look
at the UR10 robot as an example. With six Degree of Freedom (DoF), this
robot can reach any point in a sphere with a diameter of 2.6m around its base
joint, shown in purple. In the Thing Description (TD) of the robot, however,
it is only possible to specify the lower and upper bounds of the volume in
each axis. This description always spans a cuboid volume larger than the
robot’s workspace, shown here in brown. Furthermore, we are considering
the simple case of the robot in an empty environment with no other objects.
Describing a robot’s workspace based on the surrounding environment is even
more complex and harder to describe mathematically.

and verify possible collisions before aggregating the same
command to the actual device, ensuring the correct behavior
of the device and mitigating any collisions. In particular, we
perform the following contributions:

• Introducing a method that takes the URDF of any arbi-
trary robot arm as an input and generates a Web-based
DT of it, including its TD and that can be controlled using
both Forward Kinematics (FK) and IK in Section III-A1.

• Introducing a method for generating and annotating the
workspace of a robot arm in the TD automatically based
on the environment in which the DT resides, including
the minimum and maximum values for Cartesian coor-
dinates and joints and both a point cloud and an STL
representation of the workspace in Section III-A1 and
Section III-A2.

• Proposing a simulation-in-the-loop approach for validat-
ing the input values for FK and IK control and evaluating
the feasibility in Section III-A3.

The rest of the paper is structured as follows: Section II
introduces the state of the art, and in Section IV we evaluate
our approach. Section V discusses the limitations of our
approach and Section VI gives an overview of related work.
Section VII concludes this paper.

II. STATE OF THE ART

A. The Web of Things (WoT) and the Thing Description (TD)

The W3C introduced the Web of Things (WoT) [4] as an
application-layer solution to the high fragmentation that the
IoT landscape is currently suffering from. It consists of several
standards built on top of well-established Web standards. The
core of these standards is the Thing Description (TD) [5],
which defines a description format in the form of a JSON-
Linked Data (JSON-LD) document that is both human- and



1 <robot name="1 DoF Robot">
2 <link name="base"></link>
3 <link name="link"></link>
4 <joint name="joint" type="revolute">
5 <limit lower="-3.14" upper="3.14"/>
6 <parent link="base"/> <child link="link"/>
7 </joint>
8 </robot>

Listing 2: This is an example of a simple Unified Robotic Description Format
(URDF) file describing a one Degree of Freedom (DoF) robot. The URDF
describes robots using a set of <link> elements (Lines 2-3) connected using
<joint> elements (Lines 4-7) to form a tree-like structure. The URDF
can also describe the structure, visual, collision geometry, kinematics, and
dynamics of robots, but this was omitted here for brevity.

machine-readable. The TD describes the API exposed by a
Thing and any metadata needed for interacting with a Thing.
The TD abstracts all possible interactions into three types of
interaction affordances:

• Property Affordances, which map to any variable or
states exposed by a Thing. Related operations are reading,
writing, and observing. For robot arms, joint positions are
the primary properties to expose.

• Action Affordances, which map to actions that the Thing
can perform. Action affordances are invoked. Moving a
robot arm to a certain Cartesian position can be modeled
as an action affordance.

• Event Affordances represent any events or notifications
that a Thing can emit. Related operations are subscribing
and unsubscribing. In the case of a robot arm, a possible
event affordance can be collision detection.

Things that expose TDs are called Producers, while those that
consume TDs to start interacting with Producers are called
Consumers. Consumers can perform operations by sending
a certain request to the producer, who may send a response
as a result. The request and the response may include input
and output payloads, respectively, which the TD describes
using a subset of JSON Schema. This subset is capable of de-
scribing data of types "null", "boolean", "integer",
"number", "string", "array", and "object" and
constraints that apply to each type such as minimum and
maximum values for "integer" and "number", patterns
for "string" and schema for items and properties inside an
"array" and "object", respectively. For robot arms, joint
and Cartesian positions are usually modeled as "number"
and constrained by giving the minimum and maximum values
of each joint position or each dimension in the case of the
Cartesian position. In the case of the Cartesian position,
the volume spanned by the boundaries defined in the JSON
Schema is usually bigger than the actual workspace volume,
especially if the robot uses one or more revolute joints.
Describing the actual workspace to validate that a Cartesian
coordinate resides in a robot arm’s workspace is a challenge
that is currently not possible to perform using the TD. This
limitation can be visually explained in Figure 2.

B. Unified Robotic Description Format (URDF)
The Unified Robotic Description Format (URDF) [6] is

a human- and machine-readable XML format for describing

1 solid example
2

3 facet normal 0.0e0 0.0e0 1.0e0
4 outer loop
5 vertex 1.0e0 0.0e0 0.0e0
6 vertex 0.0e0 1.0e0 0.0e0
7 vertex 0.0e0 0.0e0 0.0e0
8 endloop
9 endfacet

10

11 endsolid example

Listing 3: An STL file describes the surface of any three-dimensional object
in the form of a triangulated surface. The file lists all the triangles of the
triangulated surface using their vertexes and the normal of the surface pointing
outwards from the object.

the structure, visuals, collision geometry, kinematics, and
dynamics of robots. It is used mainly in conjunction with
Robot Operating System (ROS), a software development kit
for robotic applications, as an exchange format for robot
models. The URDF represents robots using a tree structure
containing a series of links joined together with a series
of joints. For each <link> it is possible to describte its
<intertial>, <collision> and <visual> properties.
A <joint> element must specify its type as revolute (one
DoF rotating around joint axis with limits), continuous (one
DoF rotating around joint axis without limits), prismatic (one
DoF sliding parallel to joint axis), fixed (zero DoF), floating
(six DoF rotating and sliding around all axes) or planar (two
DoF in a plane perpendicular to joint axis). Furthermore
a <joint> must specify the <parent> and <child>
link and additional optional data such as <limit> and
<dynamics> properties.
The URDF cannot describe all types of robots, such as
parallel robots or robots that are not using rigid bodies as
links. Additionally, the URDF does not describe if a joint is
controllable.

C. STL

The STL file format is a text format used to describe
3D models as an unstructured triangulated surface. The file
consists of a list of all triangles that make up the surface by
listing the vertexes of each triangle, with the surface normal
pointing outwards. STL can be used to describe the surface of
point clouds.

D. Robotics Simulations

Robotics simulation frameworks are development kits that
provide the tools needed to build robot models and scenes in
which they reside, provide physics engines for kinematic and
dynamics calculations, and the algorithms used to perform
high-level functionality such as IK calculations and robot
model importing. Usually, such tools provide a Graphical
User Interface (GUI) environment that helps set up simulation
scenes visually. To run a simulation, a calculation time step
∆ tcalc needs to be specified, which is then used by the physics
engine to incrementally solve the differential equations needed
to calculate the positions of all moving objects inside a scene.
Additionally, the simulation time step ∆ tsim specifies how



(a) Real Uarm Setup (b) Workspace point cloud in DT - Top-view (c) Workspace point cloud in DT - Side-view

Fig. 3: Figure (a) shows a real setup of the Uarm robot and two conveyor belts. A DT of this scene was constructed to calculate the workspace available for
the Uarm in this setup. The labeled point cloud representing the workspace is shown in Figures (b) and (c), with white points denoting accessible positions
and red points representing inaccessible positions

often the simulation scripts are called and how often the
rendering is updated.

III. ROBWOT FRAMEWORK

To solve the shortcomings as mentioned above, we pro-
pose Robotics Web of Things (RobWoT), a method and a
framework that takes a URDF as an input and automatically
generates the corresponding WoT-enabled DT including its
TD annotated with the correct constraints based on its joint
constraints and the available workspace in the simulated scene.
Additionally, we aim to provide a solution to the IK constraints
by linking the STL file modeling the workspace to the TD and
investigating a simulation-in-the-loop approach for validating
FK and IK constraints. Robotics Simulation frameworks of-
fer the tools needed to model robot DTs for Web-enabled
robots. However, currently, the process of modeling such a
DT remains a manual endeavor that requires setting up the
simulation scene, importing the robot model, and, then manu-
ally exposing the FK and IK functionalities of the robot using
a Web server using the desired web protocol. Furthermore,
the resulting API would need to be documented in a way
that explains the inputs and outputs of each interaction, which
is a challenge to do in a declarative manner as explained in
Section II-A.

A. Method

1) Automated DT Generation: The process of generating
the DT from the URDF of a robot can be laid out into the
following steps:

1) The process starts by importing the URDF in the simu-
lation framework so it can be parsed. The robot’s joints
are counted, and their types are determined (please refer
to Section II-B).

2) Once the importing is finished, the robot’s DT performs
Nmove random movements in the simulation scene to
determine its effective workspace based on its joint con-
straints and the other collidable objects inside the sim-
ulation scene. This generates a labeled point cloud that
denotes the robot’s end effector position and whether
a collision was detected, as shown in Figure 3b and
Figure 3c. The labeled point cloud is stored as a CSV
file.

3) After generating the point cloud, a convex polyhedron
is generated around the non-collision points using the
α-shape method. The resulting polyhedron is stored as
an STL file.

4) The information gathered in the first step is used to
automatically generate a WoT-compliant server that
exposes FK and IK functions of the robot pro-
vided by the simulation framework. The DT ex-
poses this API using a TD which includes two
property affordances called "getJointPosition"
and "getCartesianPosition", and two action
affordances called "moveToJointPosition" and
"moveToCartesianPosition". The TD also has
links to the point cloud CSV file, the STL file represent-
ing the workspace, and the URDF file of the robot.

5) The coordinate system of the DT and the real robot
are usually not calibrated and would show a different
Cartesian position for the end-effector. However, a linear
transformation can transform the virtual coordinate into
the real coordinate. Assuming that xreal denotes a vector
in the real coordinate system and xvirtual denotes a vector
in the virtual coordinate system, the transformation
matrix can be described as follows:

xreal = s ·R · xvirtual + t (1)

with s ∈ R a scaling factor, t ∈ R3 the translation vector
and R ∈ R3×3 the rotation matrix. Using four samples,
it is possible to calculate both R and t with the Kabsch-
Umeyama algorithm [7], while the scaling factor s is
determined by unit conversion.

This correction ensures that the input and output values of the
DT and the real robot remain the same.

2) Validating IK inputs using STL file and Point Cloud:
By providing the robot’s workspace as an STL file, any
consumer can use the file to validate if a certain Cartesian point
is inside the workspace polyhedron. However, constructing
the STL file using the α-shape method may fail for some
workspaces. In these cases, we propose the following method
to check if a certain position is accessible or not:

1) Define a percentage threshold.
2) Find and build a set of the N -nearest point to the

investigated position



(a) First scene with the UR3 robot (b) Second scene with the CR3 robot

Fig. 4: These figures show two robots and two scenes used in our generation
time evaluation. Figure (a) shows the simplest scene with the UR3 robot, and
Figure (b) shows the CR3 in the second scene. The other robots and scenes
are omitted for brevity but can be viewed in our repository.

3) Check if the percentage of inaccessible points in this set
is higher than the defined threshold; if so, then the point
is inaccessible

3) Validating FK and IK inputs using simulation-in-the-
loop: Having a DT of a real robot and its environment
facilitates a different and novel approach for validating that
a robot’s movement does not result in a collision with other
objects in the environment. The advantage of this approach is
that it can take changes in the environment into account and
validate accordingly, which is impossible using the static STL
file generated at the beginning of the simulation. This is done
by first sending the movement command to the DT, which tries
to perform it and check for any collisions. The same command
is relayed to the device if no collision is detected.

B. Implementation
We implemented our method as an open-source solution1

using Coppeliasim [8] as a simulation framework and the
node-wot library2 to handle generating the WoT server for
the DT. Coppeliasim is an extensive robotics simulation ap-
plication that provides all the tools for importing URDF files,
calculating FK and IK, and simulating robotics using different
physics engines. Additionally, it offers a WebSockets remote
API option that allows any JavaScript/Typescript application
to communicate with it, giving access to all functions and
libraries inside it. node-wot is the reference implementation
of the W3C Scripting API written in JavaScript/Typescript. It
is meant to facilitate the development of WoT Consumers and
Producers application logic without the need to be concerned
about setting up the underlying communication protocol. Our
implementation provides simple Typescripts libraries that can
automatically generate the DT including its WoT-compliant
Web server and sample Consumers, also written using node-
wot, that can interact with the DT. However, our method can
be used with any simulation framework and any programming

1 Our implementation and evaluation data are available
through this link and will be made public upon the
acceptance of the paper: https://github.com/tum-esi/RobWoT.git
2 https://github.com/eclipse-thingweb/node-wot

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300

Ti
m

e 
in

 s
ec

o
n

d
s

Number of handles

Generation Time Based on Scene Complexity

MyPal (17 handles)

MechArm (20 handles)

CR3 (21 handles)

UR3 (20 handles)

Fig. 5: We evaluated the time needed to generate the Web server and the
annotated TD for four robots and in four scenes with increasing complexity.
The time increases linearly with the number of handles inside a scene. An
object in Coppeliasim is usually made up of multiple handles, such as the links
and joints of a robot. The generation time also depends on the complexity of
the robot arm itself, its DoF, and geometry.

language, as long as there is a way to generate a Web server
capable of controlling and actuating the simulation and the
DT, respectively.

IV. EVALUATION

To evaluate our approach, we perform two experiments. The
first experiment evaluates the time needed to generate a Web
server and its annotated TD using our approach. By contrast,
the second experiment evaluates the accuracy of the calibrated
DT movement using IK compared to its physical robot. All
evaluations were performed on a computer with 11th Gen Intel
Core i5-1135G7 Processor running at 2.40GHZ, an NVIDIA
GeForce MX450 GPU, 16GB of RAM, and 512GB of SSD
NVME WDC SN730 storage. The evaluations were run on
a Windows 10 operating system, using Coppeliasim version
4.4.0 and node-wot version 0.8.5.

A. Evaluating Generation Time

To evaluate the generation time of our approach, we con-
ducted the evaluation using four robot models. Each robot was
put in 4 scenes of incremental complexity. The first scene
contains four collidable handles, the second 66, the third 135,
and the fourth 239 handles. An object can consist of multiple
handles, and each one is considered when checking for a
collision. The generation process was performed three times
for each robot in each one of the four scenes, and then the
average was calculated. The evaluation does not take the time
for importing the URDF of each robot into account, as it is
negligible compared to the execution time of our algorithm for
generating the workspace. Figure 5 shows the results of the
evaluation. The time needed for generating the Web server
and the TD scales linearly with the increase of handles in
the simulation scene. It also depends on the complexity of
the robot arm itself, its DoF, and geometry. The time needed
remains in a couple of minutes for the most complex scenes.
It is faster than any manual approach for setting up the DT,
calculating the workspace, and writing the corresponding TD.

https://github.com/tum-esi/RobWoT.git
https://github.com/eclipse-thingweb/node-wot


(a) Real UR10 robot grabbing green
cube

(b) DT of UR10 robot grabbing green
cube

(c) Real UR10 robot grabbing red
cube

(d) DT of UR10 robot grabbing red
cube

Fig. 6: We perform our IK for the calibrated DT using an industrial-grade UR10 robot. We manually moved the robot arm to a certain coordinate and recorded
these coordinates. We, then, invoked the "moveToCartesianPosition" of the DT using the coordinates in the previous step. After the DT performs the
movement, we read the joint positions using the "getJointPosition" property affordance, which we propagate back to the physical robot and compare
with the result position with the recorded position. Two positions in which the robot is aiming to grab a 2.5 cm cube are shown here. This illustrates the
accuracy of the DT.

B. Evaluating IK of calibrated DT

We evaluate the accuracy of the IK control of our a
calibrated DT to check if the auto-generated and cali-
brated DT is capable of representing the physical robot
movements with minimal error. To perform this evalua-
tion, we used an industrial-grade UR10 robot arm. We
manually moved the robot arm to a certain coordinate
and recorded these coordinates. We, then, invoked the
"moveToCartesianPosition" of the DT using the
coordinates in the previous step. After the DT performs
the movement, we read the joint positions using the
"getJointPosition" property affordance, which we
propagate back to the physical robot and compare with the
result position with the recorded position. We have done this
procedure 14 times and calculated the distance error for each
position. A couple of the positions are shown in Figure 6,
and our measurement results can be viewed in Figure 7. The
average offset is approximately 6.8 mm, with the highest
error being around 14.7 mm. This level of accuracy gives us
confidence that our approach is viable in industrial scenarios
and is high enough to handle centimeter-precise tasks such as
grabbing 2.5 cm cubes as seen in Figure 6.

V. CURRENT LIMITATIONS AND FUTURE WORK

Our method assumes that all joints described in the URDF
are controllable. However, this is not the case for some robots
that rely on auxiliary joints to function properly, such as the
Uarm and the Dobot Magician. Such robots require additional
manual steps to correctly calculate their IK.

Furthermore, our method is as accurate as the simulation
scene in which the robot is imported. Currently, setting up
the actual simulation scene remains a manual task that must
be done before importing a robot’s URDF. This can result
in inaccuracies in the generated workspace, leading to faulty

0 5 10 15

Evaluating IK of calibrated DT

Distance in mm

Error Distance

Fig. 7: This Figure illustrates the distribution of the data gathered in the
experiment described in Section IV-B. The average offset from the recorded
position is approximately 6.8 mm. The lowest offset is 1.4 mm, and the highest
is 14.2 mm

behavior. The process is also arduous and time-consuming.
Our future work aims to use a scene description format to
describe a whole environment, including all the robots inside
it, which is generated using lidar point clouds and image
recognition techniques.

VI. RELATED WORK

Web-enabled robotics and web-enabled DT has been gaining
increasing attention in the literature.

[9] proposes a novel approach that leverages DTs and inte-
grates them with ontology and cloud computing technologies
intending to provide effortless integration, configuration, and
monitoring of industrial robotic systems. The DT of the robots
is implemented as an HTML5 application, built on top of
Babylon.js, which uses WebGL for browser-side rendering.



The models of the robots are fetched from the cloud in GLFT
format automatically.

[10] introduced a novel DT platform for a human-in-the-
loop control of robotics using VR technology. Human control
of the DT is propagated to the actual robot arm using very
low latency.

[11] manually built a cyber-physical system consisting of
a 4-DoF robot arm controlled using an ESP32 module, which
connects to the Web server using WebSockets. The Web server
exposes a WebGL-based DT of the robot arm that can be
viewed and controlled in the browser. This DT is mainly
developed for human interaction.

[12] investigated the process of developing Web DTs,
called WDTs, in the paper and demonstrated this concept
by manually developing a web-based DT for a mini-scale
assembly line. The virtual model of WDT was manually
built using Unity and then exported to WebGL. The WDT
can be controlled using a physical PLC. To connect the
PLC to the WDT, a Node.js proxy was developed, which
acts as an OPC UA Client and a WebSocket server. The
Node.js proxy communicates with the PLC over OPC UA and
relays messages over Websocket to the WDT of the assembly
line. According to the paper, this setup can help students
learn manufacturing without costly engineering tools, facilitate
research and enable web-based simulation for the industry.

[13] proposed DTs to simulate human behavior and
Autonomous Mobile Robots (AMRs). The DT is built on
top of the Robot Operating System (ROS) framework. In
contrast, the simulation uses Unity for human entities and
the Gazebo robotics simulator for Autonomous Mobile Robots
(AMRs). Communication between these components happens
over MQTT.

[14] proposed a method for automatically generating a DT
modeled using the TD and mimicking the behavior of existing
Web Things using the Markov Decision Process. The DT can
be used to simulate the behavior of a Thing. The method
works with the assumption that Things only contain discrete
properties, limiting the universal applicability of this method.

Our approach aims to facilitate the development of Web
of Robotic Things systems and minimize the manual work
needed to set up simulations and DTs for them. Our approach
would eliminate the manual work needed to set up the DTs in
[9]–[13]. Furthermore, our approach does not enforce a certain
communication protocol for communicating with the DT and
does not rely on specific frameworks. Our method aims to
generate TDs and DT for robots, leveraging domain-specific
information and tools for the generation process. This focus
on the robotics domain allows us to generate TDs and DTs
curated specifically for robotics, which are more expressive
and accurate as opposed to a more general approach proposed
by [14].

VII. CONCLUSION

In this paper, we presented RobWoT, a method and simula-
tion framework for automatically generating the WoT-enabled
DT of a robot and its corresponding TD using only the

URDF of a robot as an input. Our method requires minimal
human intervention and aims at generating TDs for robots that
can describe the actual workspace available for the robots,
which is not possible using current TD mechanisms. We
propose methods for describing a robot’s workspace using an
STL file. For complex workspaces that cannot be constructed
accurately, we proposed a simulation-in-the-loop approach for
validating whether a Cartesian point is inside the workspace.
We evaluated the time required to generate WoT-enabled DT
and TD and the accuracy of our DT IK compared to a
real robot. Our evaluation shows that our approach is highly
scalable and that, on average, the distance error between the
virtual and real end-effector is only 6.8 mm, and is, therefore,
viable for industrial applications.

REFERENCES

[1] I. H. Khan and M. Javaid, “Role of Internet of Things (IoT)
in Adoption of Industry 4.0,” Journal of Industrial Integration
and Management, vol. 07, no. 04, 2022. [Online]. Available:
https://doi.org/10.1142/S2424862221500068

[2] I. Research, “Size of the market for industrial robots worldwide from
2018 to 2020, with a forecast through 2028 (in billion U.S. dollars)
[Graph],” October 25 2021. [Online]. Available: https://www.statista.
com/statistics/728530/industrial-robot-market-size-worldwide/

[3] A. Kamilaris and N. Botteghi, “The Penetration of Internet of Things
in Robotics: Towards a Web of Robotic Things,” J. Ambient Intell.
Smart Environ., vol. 12, no. 6, January 2020. [Online]. Available:
https://doi.org/10.3233/AIS-200582

[4] Michael Lagally, Ryuichi Matsukura, Michael McCool, Kunihiko
Toumura, Kazuo Kajimoto, Toru Kawaguchi, Matthias Kovatsch,
“Web of Things (WoT) Architecture 1.1,” https://www.w3.org/TR/2023/
PR-wot-architecture11-20230711/, accessed: July 13, 2023.

[5] Sebastian Kaebisch, Michael McCool, Ege Korkan, Takuki
Kamiya, Victor Charpenay, Matthias Kovatsch, “Web of Things
(WoT) Thing Description 1.1,” https://www.w3.org/TR/2023/
PR-wot-thing-description11-20230711/, accessed: July 13, 2023.

[6] Dave Coleman, Hirotaka Yamada, “urdf/XML,” http://wiki.ros.org/urdf/
XML, accessed: July 13, 2023.

[7] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 13, no. 4, 1991.

[8] E. Rohmer, S. P. N. Singh, and M. Freese, “CoppeliaSim (formerly
V-REP): a Versatile and Scalable Robot Simulation Framework,” in
Proc. of The International Conference on Intelligent Robots and Systems
(IROS), 2013, www.coppeliarobotics.com.

[9] T. Hoebert, W. Lepuschitz, E. List, and M. Merdan, “Cloud-Based
Digital Twin for Industrial Robotics,” in Industrial Applications of
Holonic and Multi-Agent Systems, V. Mařı́k, P. Kadera, G. Rzevski,
A. Zoitl, G. Anderst-Kotsis, A. M. Tjoa, and I. Khalil, Eds. Cham:
Springer International Publishing, 2019.

[10] I. A. Tsokalo, D. Kuss, I. Kharabet, F. H. P. Fitzek, and M. Reisslein,
“Remote Robot Control with Human-in-the-Loop over Long Distances
Using Digital Twins,” in 2019 IEEE GLOBECOM, 2019.

[11] S. Khrueangsakun, S. Nuratch, and P. Boonpramuk, “Design and De-
velopment of Cyber Physical System for Real-Time Web-based Visual-
ization and Control of Robot Arm,” in 2020 ICCRE, April 2020.

[12] S. Konstantinov, F. Assad, W. Azam, D. Vera, B. Ahmad, and R. Har-
rison, “Developing Web-based Digital Twin of Assembly Lines for
Industrial Cyber-physical Systems,” in 2021 4th IEEE International
Conference on Industrial Cyber-Physical Systems (ICPS), May 2021.

[13] Y. Fukushima, Y. Asai, S. Aoki, T. Yonezawa, and N. Kawaguchi,
“DigiMobot: Digital Twin for Human-Robot Collaboration in Indoor
Environments,” in 2021 IEEE Intelligent Vehicles Symposium (IV), 2021.

[14] L. Sciullo, A. Trotta, F. Montori, L. Bononi, and M. Di Felice,
“WoTwins: Automatic Digital Twin Generator for the Web of Things,”
in 2022 IEEE WoWMoM, 2022.

https://doi.org/10.1142/S2424862221500068
https://www.statista.com/statistics/728530/industrial-robot-market-size-worldwide/
https://www.statista.com/statistics/728530/industrial-robot-market-size-worldwide/
https://doi.org/10.3233/AIS-200582
https://www.w3.org/TR/2023/PR-wot-architecture11-20230711/
https://www.w3.org/TR/2023/PR-wot-architecture11-20230711/
https://www.w3.org/TR/2023/PR-wot-thing-description11-20230711/
https://www.w3.org/TR/2023/PR-wot-thing-description11-20230711/
http://wiki.ros.org/urdf/XML
http://wiki.ros.org/urdf/XML

	Introduction
	State of the Art
	The Web of Things (WoT) and the Thing Description (TD)
	Unified Robotic Description Format (URDF)
	STL
	Robotics Simulations

	RobWoT Framework
	Method
	Automated dt Generation
	Validating IK inputs using STL file and Point Cloud
	Validating FK and IK inputs using simulation-in-the-loop

	Implementation

	Evaluation
	Evaluating Generation Time
	Evaluating IK of calibrated dt

	Current Limitations and Future Work
	Related Work
	Conclusion
	References

