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Abstract—Future connected applications require distributed
processing on different layers in the network to orchestrate and
optimize their behavior. This necessitates a change in the process-
ing architecture, especially regarding the ability to self-adapt to
changing circumstances, such as environmental changes or fault
scenarios. Self-adaptivity in computing systems was previously
often achieved with the MAPE-K concept. However, in real-time
and low-latency environments with a distributed, hierarchical
processing architecture, the reaction time of the MAPE-K cycle
can be limited by its complexity. In this paper, we propose a
possible solution to a quicker reaction by introducing X-MAPE:
extending self-adaptivity with predefined, configurable, reflexive
actions. In essence, X-MAPE aims to construct a low-latency
path between monitoring the system and executing actions to
influence it, to reflexively react to a changing system state and
improving the system’s behavior until a more optimal decision
can be made in a less time-critical manner. We present possible
realizations of this principle on different layers and components
of future 6G networks, providing a vision and framework for
adaptive computing systems with reflexive reactions.

Index Terms—Autonomic Computing, Self-adaptive, 6G

I. INTRODUCTION

The next generation of mobile communications, 6G, is de-
signed to enable a wide range of applications, such as extended
reality (XR) or autonomous driving [1]. XR demands both
extremely high throughput and ultra-low latency: the former
to maintain immersion in a complex environment and the latter
to prevent user motion sickness. The latency requirements for
autonomous driving are even more stringent, as the system
must facilitate split-second decisions to ensure passenger
safety. Additionally, the constant variability of the network
environment necessitates extreme flexibility. For instance, the
participants of autonomous driving, such as vehicles, traffic
infrastructure, and pedestrians with smart devices, constantly
change cells and network access points as they move. This
constant flux can lead to rapidly changing network conditions
in terms of bandwidth, latency, and connectivity. To cope with
this challenging environment, a concept known as autonomic
computing must be introduced in such a network. Key ele-
ments of autonomic computing include self-configuration, self-
optimization, self-healing, and self-protection.

One way to achieve autonomic computing is to introduce
the so called MAPE-K cycle into the system [2]. The acronym
stands for Monitor, Analyze, Plan, Execute, and Knowledge,
indicating the four stages of the autonomic control loop and
the shared knowledge base that supports them.
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Fig. 1. Hierarchical Processing Architecture of 6G Applications

Fig. 1 shows a possible hierarchy of a 6G processing archi-
tecture with a device node for local processing of the attached
sensors and actuators, an Edge node for low-latency, powerful
processing and short-term feedback from the network, and
the Cloud infrastructure for Big Data analysis and long-term
orchestration. Additionally, a high-level of adaptivity in the
employed algorithms and processing nodes of all hierarchical
levels is required to react to changing user-, application- and
network-behavior, as well as fault scenarios.

This adaptivity is subject to several challenges in 6G
networks, which we will express using the terminology of
the MAPE-K cycle. Recent trends in autonomic computing
have seen a rise in machine learning and generally more
complex algorithms to cope with larger and more complex
systems. Furthermore, these algorithms are often implemented
in software for increased flexibility. Therefore, the Analyze
and Plan stages can become quite computationally intensive
and increase processing time. Since device nodes are often
constrained in nature, the hierarchical architecture of the
network can be used to perform more complex Analyze and
Plan tasks in the Edge. However, the added propagation delay
and network latency can again lead to a slower adaption
of the MAPE-K cycle. This can have a negative effect on
the performance of the adaptive system, since the reaction
time increases, thus reducing the chances of a well-optimized
system or a successful recovery from a fault.

An abstraction of this problem is that, in certain situations,
a complex adaption algorithm can optimize a system’s perfor-
mance in the long-term, but is too slow to enable an immediate
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Fig. 2. X-MAPE: MAPE-K cycle extended with reflexive path (highlighted
in orange) between Monitor and Execute.

reaction for a preliminary improvement in performance in case
of a fault or other change in system state. A practical example
could be a robot encountering an unknown obstacle, requiring
an immediate reaction for which extensive processing in the
cloud is too slow. Given this abstraction, we can seek inspi-
ration regarding a solution in biology. The human brain has
a complex structure, evaluating and learning from countless
inputs from sensory neurons and previous responses. This
process can be comparatively slow, with a typical reaction time
of far more than 100 ms [3]. When this is too slow, reflexes
are used to bypass the cognitive thought process and elicit
a response almost immediately. They are based on a smaller
number of input signals and constrained in their complexity.
They are, therefore, fast, specific actions of limited complexity
with reduced improvement potential but almost immediate
effect. Applying this concept to autonomic computing, the idea
is to create a low-latency path between Monitor and Execute
to reflexively react to certain input conditions. Fig. 2 shows the
reflex extensions added to the MAPE-K cycle for autonomic
computing, which will further be called X-MAPE.

Another work inspired by human reflexes proposed an
abstract model of control loops of varying complexity for
real-time autonomic systems [4], however, without addressing
implications for concrete systems. The conditioned reflex
system in [5] focused on reducing the processing overhead
in wireless sensor networks by sharing context information
between entities, without considering reflexive reactions to
system changes or faults. In contrast, X-MAPE targets spe-
cific, predefined actions to be executed immediately within
hierarchically composed systems when monitoring a certain
input condition. Relevant related work will be included in the
subsections on the different realizations themselves.

In the remainder of this paper we will in increased detail
present the concept and workflow of X-MAPE, in Section
II. In Section III we will then present some visions on
the deployment and realization of this concept on different
layers of the 6G ecosystem, ranging from Memristor Cellular
neural networks in analog sensor processing to server resource
management in network interface cards (NICs). We will then
conclude with a summary and outlook.

II. CONCEPTUAL ARCHITECTURE

Self-adaptivity on different layers of the hierarchical pro-
cessing architecture has varying requirements in terms of

reaction time, knowledge required and regarding the inter-
action with sensing and acting entities. The wide variety of
applications requiring network connection cover a broad range
of dynamic behaviors necessitating adaptivity on different
levels, much like the human body in biology. Here, reflexes
can generally be divided into monosynaptic and polysynaptic.
Monosynaptic reflexes, like the knee jerk, only involve one
sensor neuron and one motor neuron that are connected with
one synapse, usually arced via the spinal cord. A polysynaptic
reflex involves at least one interneuron and can contain multi-
ple synapses [6], possibly becoming quite complex and even
involving parts of the brain [7]. Interestingly, many reflexes
can be inhibited by conscious thought [8] and modulated
or learned by classical conditioning [9]. This enables the
integration of memory of previous stimuli-response scenarios,
which is key to the adaption and creation of reflexes in chang-
ing circumstances. While this process can require generations
in biology, the programmable nature of computing systems
allows reconfiguration to happen in an instant when required.

Therefore reflexes in biology have two important charac-
teristics that shall be mapped to adaptive computing sys-
tems. Firstly, reflexes of varying complexity can be used to
target the different dynamics of hierarchical systems. While
micro-electro-mechanical system (MEMS)-switch based direct
connections between sensors and actuators can provide a
monosynaptic-like reflex, a polysynaptic reflex could be used
to react to a fault requiring information from multiple system
parts. Further, while reflexes generally provide a predefined
action to be executed, they are by no means fixed. The
knowledge that is acquired and shared by a system over time
can be used to activate, deactivate or reconfigure reflexes.

While such reflexive extensions are not fixed to be imple-
mented in hardware, the following visions on different realiza-
tions in 6G networking systems will focus on enabling low-
latency decision-making by configurable hardware reflexes in
adaptive systems. The goal is to provide a hardware platform
for using reflexes in suitable locations, while the exact function
and trigger of these reflexes can be configured.

III. DEPLOYMENT ON DIFFERENT LAYERS OF THE 6G
ECOSYSTEM

The following subsections will cover envisioned realizations
of the X-MAPE concept in several components and layers of
the 6G processing infrastructure. While the individual modules
differ in their approaches and target different components,
they all benefit the processing architecture from a systems
perspective. An overview of the envisioned deployment is
given in Fig. 3 following the hierarchical processing architec-
ture presented in Fig. 1, hereby focusing on the Devices and
Edge Nodes, where low-latency is paramount. Hereby, the left
side presents possible extensions in the devices themselves,
referring to Subsections III-E and III-F. Moving to the right,
the network is traversed, giving the possibility of distributed
control (III-B) and more powerful processing either directly
in the network (III-C), in general-purpose servers (III-A) or in
specialized processing hardware (III-D).
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Fig. 3. Overview of envisioned realizations of X-MAPE (highlighted in orange) in different components and layers of an exemplary 6G processing architecture.

A. Network Interface Cards
Many applications connected by 6G have strict latency

requirements, thus requiring application-level processing near
the user, i.e., in the edge of the network. Due to the frequent
changes in human and application behavior, including mobil-
ity, environmental changes, etc., the traffic characteristics and
processing requirements of an Edge server can vary drastically
and rapidly. This requires a NIC that can quickly and energy-
efficiently adapt to changing conditions [10].

Concretely, a prerequisite to a performant and energy-
efficient operation of a 6G Edge server is the monitoring
of the servers state, both regarding the processing resources
and traffic characteristics. To fulfill the requirements of all
applications, a quality-of-service (QoS) aware processing has
to be ensured, e.g. using priority scheduling. To achieve an op-
timal resource usage, load balancing mechanisms to distribute
the processing on the CPU cores [11] can be accompanied
by load- and traffic-aware power management to minimize
power consumption without jeopardizing the fulfillment of
the applications requirements. The principles of X-MAPE can
be applied here to tackle these challenges, which is depicted
in Part A. of Fig. 3. The Edge server is connected to the
network via a SmartNIC. A typical MAPE-K cycle may be
executed in software to keep a holistic view and run complex
algorithms, but is rather slow in reacting to changes due to
the peripheral, memory and processing latencies. Applying the
principles of X-MAPE, the SmartNIC can be extended with
additional monitoring and execution logic. It can monitor the
servers processing resources, inspect and analyze incoming
traffic right at the source, and hence make early processing
decisions, before all latency-intensive data movement in the
server. A minimal reflex latency is ensured by implementing
the additional units in hardware on the SmartNIC.

Regarding a concrete implementation, the monitoring logic
can include header parsers, packet classifiers and an interface
to the PHY to characterize the incoming traffic and driver
extensions to monitor the servers processing resources. The
reflex can be realized with configurable match-action tables,
can be triggered when a certain condition is met or a pre-
defined threshold is surpassed, and can perform actions on
the data path, e.g. dropping or forwarding packets to other
nodes, as well as influence the processing behavior of the
server by making scheduling decisions, steering packets into
correct memory regions and performing power management.

B. Adaptive Distributed Cyber-Physical-Systems

In an Industry 4.0 environment, multiple cyber-physical
systems (CPS) interconnect to execute complex manufacturing
processes. These systems need a robust, flexible, and adaptive
communication infrastructure for efficient coordination.

Disruptions such as maintenance or malfunctions can occur,
traditionally necessitating lengthy human-led repairs. How-
ever, our flexible 6G network architecture can autonomously
adapt, enhancing resilience and throughput. Despite this, the
MAPE-K loop’s computational latency can challenge real-
time responses. We address this by incorporating a reflex
mechanism. It triggers instantly to maintain uninterrupted CPS
operation, while the MAPE-K loop later optimizes system
performance. Together, they ensure robust operation by com-
bining immediate action with eventual optimization.

The safety-critical applicability of CPS extends to trans-
portation networks, notably the hyperloop system. With high-
speed capsules traveling through near-vacuum tubes, real-time
responsiveness is vital. In [12], the hyperloop system integrates
the reflex mechanism with an advanced anomaly detection
system to quickly respond to potential hazards in the magnetic
suspension system, showcasing the applicability of X-MAPE.

Like in the Industry 4.0 environment, the traditional
MAPE-K loop, while capable of handling complex system
state changes, could be inadequate for dealing with real-time
emergencies due to the computational latency of complex Ana-
lyze and Plan stages on constrained devices. Hence, integrating
a reflex mechanism with the anomaly detection system pro-
vides an efficient solution. This allows the hyperloop system
to take immediate action upon the detection of an anomaly,
prior to the completion of the full MAPE-K loop.

Therefore, the incorporation of a reflex mechanism in the 6G
network architecture, enhancing real-time responses, becomes
an invaluable asset across a broad spectrum of CPS, ranging
from industrial processes to high-speed transportation systems
like the hyperloop. The development of such systems signifies
a significant stride towards ensuring continuous operation,
safety, and resilience of critical systems, even in the face of
unforeseen disruptions.

C. In-Network Computing

The idea of having programmable networks and (parts of)
computing algorithms in the network was already proposed in
1997 in the form of active networks [13]. However, due to the



lack of computational capacity and programming models for
such network devices, it was not successful.

With the advent of Software-Defined Networking (SDN),
SmartNICs, programmable switches, and programming lan-
guages like P4 [14] using a High-Level Intermediate Repre-
sentation (HLIR) [15] gave new momentum to this idea.

Reflexes would have to interact with each other or with
a central controller, for instance to learn and update rules.
However, with an increasing number of connected devices
the network traffic would increase drastically. To address this
problem, In-Network Computing (INC) can help to reduce the
network load by processing the data already in the network
instead of sending the complete raw data through the network.
Architectural designs for programmable network devices can
vary greatly. Although with P4 a vendor- and architecture-
independent language for programmable network devices ex-
ists, it is still a challenge to leverage features and achieve high
performance for these devices.

Therefore, an exploration of programming models that
allow these heterogeneous devices to be programmed while
leveraging their features without requiring the programmer
to manually optimize their code for all of them, is of great
importance to make INC feasible.

Furthermore, to provide a flexible Reflexive Action path with
low latency between Monitor and Execute which is influenced
by the Knowledge, new System-on-a-Chip (SoC) designs could
be explored that include, for instance, programmable ASICs
and/or embedded FPGA (eFPGA).

D. Neuromorphic Computing Hardware

Neuromorphic Computing emerges out of the motivation to
understand biological data processing to exploit such mech-
anisms in technical implementations. In the context of 6G,
it has not only been proposed for applications but also to
improve communications itself due to its power-efficiency and
low-latency [16]. The neuromorphic term is very general and,
therefore, used for various systems. In this work we refer to
neuromorphic processors as devices that use highly parallel
processing on multiple processors and low-latency connection
between computing nodes, such as Loihi2, BrainScales or
SpiNNaker2 [17] [18] [19].

Reflexes are biological key mechanisms to drastically re-
duce latency between external influence and a reaction. We
define latency as the worst case reaction time between a
sensory input until a reaction output is generated. A reflex
on neuromorphic multichip-processors can be implemented
simpler compared to conventional processing systems. One
or more processors on such devices can be fully allocated
to process the full X-MAPE cycle. This includes reserved
processors for detecting inputs that trigger a reflexive action
and, therefore, ensure a low-latency reaction time. Multicas-
ting enables writing of incoming sensory data to multiple
memory regions within the system. This ensures that data is
close to the relevant processors, following a near-memory-
computing approach to reduce access times. Additionally,
cores can communicate directly with each other, enabling an

efficient and fast implementation of the connections between
MAPE nodes and especially the central Knowledge node, as
depicted in Fig. 2.

E. Reconfigurable Reflex on Device Level

Touching a hot surface triggers a human reflex. Thereby,
specialized skin thermoreceptors immediately send electrical
signals to the spinal cord, initiating a reflex. These signals
travel to interneurons and then to motor neurons, which control
the muscles. By bypassing cognitive processes, this reflex
ensures a rapid response, reducing the risk of injury. The
X-MAPE reflex mechanism can be integrated into technical
systems such as robots. When a robotic system encounters
a hot surface, it typically lacks the instinct to automatically
withdraw its robotic finger. However, by implementing a local
reflex mechanism, the robot can protect itself. This low level
of abstraction allows a quick and efficient response since the
processing and decision-making (i.e., Analyze and Plan in
Fig. 2) take place directly on the device, without delays caused
by communication with edge or cloud. E.g., a direct reflex
between a sensor (Monitor) and an actuator (Execute) refers to
a mechanism where the sensor detects a certain condition and,
based on that information, immediately triggers the actuator to
perform a specific action or response (see Fig. 3 Part E.). The
hardware realization of the reflex can be done with MEMS-
switches triggered at a certain threshold, or microcontrollers
triggered by a lookup table or smart sensors with included
filter preprocessing capabilities such as Convolutional Neural
Networks (CNNs). In addition, the reflex can be reconfigured
by reflective analysis and planning of computational layers
(Knowledge). The reconfiguration can be realized by adjust-
ment of the threshold, a lookup table, or weights of the CNN.
This achieves a higher level of adaptability and optimization.

For a simple, miniaturized, and cost-effective reflex hard-
ware solution without compromising functionality, heteroge-
neous integration with low-cost connection technologies is
promising. This involves implementing different functions on
highly integrated chips or partitioning a monolithic chip into
smaller functional units called ”chiplets”. In the context of
6G applications like smart gloves, modified back-end-of-line
(BEOL) technologies are needed for electronic packaging
of chiplets. These modifications include sustainable additive
methods such as 3D printing, self-assembly processes, and
polymer multi-layer technologies. Integration and connection
of chiplets can be achieved efficiently and cost-effectively in
2.5/3D stacks, enabling even greater levels of miniaturization.

F. Memristive Cellular Neural Networks

6G networks require power-efficient, high-speed, and low-
latency sensory data processing structures. An effective so-
lution for developing such structures is based on Cellular
Nonlinear/Neural Networks (CellNNs) as the computational
cores integrated with the sensors/actuators that provide the
sensory input data, as is exemplary depicted in Part F. of
Fig. 3. CellNNs are computational arrays inspired by biol-
ogy, which consist of locally-coupled elementary dynamical



systems called cells. Despite their compact representation,
CellNNs demonstrate the ability to establish innovative ap-
proaches to information processing through complex dynamics
of relatively simple locally coupled dynamical systems.

Non-volatile memristors have the potential to be useful
in future electronic applications such as novel signal pro-
cessing paradigms, combining sensing, computation, and data
storage capabilities [20], [21]. To meet the demands of 6G
networks, it becomes desirable to deploy fast and energy-
efficient processors along with the features offered by mem-
ristors, known as Memristive Cellular Neural Networks (M-
CellNNs). The integration of memristors into CellNNs offers
benefits such as reducing the need for separate memory
modules, increasing computational efficiency, and enabling
flexible functionality in computing networks. Furthermore,
memristors can be utilized as part of cell interconnections,
providing flexible functionality in computing networks. These
memristor-based connections allow for a wide range of tasks,
including synaptic weight adjustments and dynamic adaptation
[22]. The reflex process occurs at the device level, highlighting
the need of immediate data processing. M-CellNNs can be
incorporated directly within a system’s sensors, improving
overall system performance by enabling localized processing
[23]. This method enables real-time, low-latency processing
of sensory data, allowing for faster responses and decreasing
the need to transfer raw data to a central processing unit.

By integrating M-CellNNs into the X-MAPE mechanism,
the Monitor phase benefits from their ability to assess data
and trigger system responses directly in the Execute module
when necessary. Therefore, as indicated in the Fig. 3, their
integration with the sensors can play a role in expanding the
mechanism to Reflexive Action. Training of weights within M-
CellNNs can be achieved by connecting the local device to
the cloud. More sensors in a 6G network offer increased data
collection, and the cloud-based processing leads to improved
weight sets. The updated weights are quickly implemented
using the properties of memristors, improving M-CellNN and
X-MAPE mechanism performance.

IV. CONCLUSION AND OUTLOOK

Many applications require the ability to quickly adapt to
changing circumstances on several layers in modern connected
systems, especially the 6G ecosystem. X-MAPE extends the
MAPE-K autonomic computing framework with a low-latency,
reflexive path between monitoring the system and executing
actions that benefit the system as soon as possible. Several
visions on realizations of this concept on different layers
of 6G networks were described, spanning many components
directly from the sensor to deep into the network. Further,
the integration and interplay of X-MAPE between different
layers and components was sketched. In future work, concrete
implementations for each presented component shall be ex-
plored and evaluated in detail. An initial individual evaluation
should be followed by a combination and integration of all
components, exploring the benefit of applying X-MAPE to a
hierarchical, connected processing infrastructure.
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