
ADAssure: Debugging Methodology for
Autonomous Driving Control Algorithms

Andrew Roberts⋄∗, Mohammad Reza Heidari Iman⋄†, Mauro Bellone∗, Tara Ghasempouri†,
Jaan Raik†, Olaf Maennel‡, Mohammad Hamad§, Sebastian Steinhorst§

∗ FinEst Centre for Smart Cities, Tallinn University of Technology
† Department of Computer Systems, Tallinn University of Technology

‡School of Computer and Mathematical Sciences, The University of Adelaide
§Department of Computer Engineering, Technical University of Munich

Abstract—Autonomous driving (AD) system designers need
methods to efficiently debug vulnerabilities found in control
algorithms. Existing methods lack alignment to the requirements
of AD control designers to provide an analysis of the parameters
of the AD system and how they are affected by cyber-attacks.
We introduce ADAssure, a methodology for debugging AD con-
trol system algorithms that incorporates automated mechanisms
which support generation of assertions to guide the AD system
designer to identify vulnerabilities in the system. Our evalua-
tion of ADAssure on a real-world AD vehicular system using
diverse cyber-attacks developed a set of assertions that identified
weaknesses in the OpenPlanner 2.5 AD planning algorithm
and its constituent planning functions. Working with an AD
control system designer and safety validation engineer, the results
of ADAssure identified remediation of the AD control system,
which can support the implementation of a redundant observer
for data integrity checking and improvements to the planning
algorithm. The adoption of ADAssure improves autonomous
system design by providing a systematic approach to enhance
safety and reliability through the identification and mitigation of
vulnerabilities from corner cases.

Index Terms—Security, Autonomous Driving

I. INTRODUCTION

Autonomous driving (AD) vehicles are increasingly being
utilised for transportation on public roads. Waymo and Cruise
offer AD ride-hailing services in San Francisco, Apollo Baidu
in China, and numerous such services are operating in Europe.
Central to the wider-adoption of AD vehicles on public roads
is the security and safety of their control algorithms that enable
self-driving technology. AD control algorithms comprise a
complex code-base of interconnected modules that perform
tasks and sub-tasks that enable a vehicle to sense, perceive,
localise, and navigate in a driving environment. With the
increase in diversity of AD use-cases from valet parking to
public transportation in public traffic, the code base of AD
control algorithms will reputedly grow from 100-200 million
to billions of lines of code [1].

Within this complex environment, debugging the code for
logical errors arising from unexpected control behaviour is
a fundamental challenge [2]. AD system designers need to
pinpoint where in the control software weaknesses are, in order
to focus debugging efforts in an efficient manner. Existing
studies attempt to rectify unexpected AD control behaviour
at run-time through smoothing trajectories utilising neural
networks [3] [4] [5]. The applicability of these studies in real-
world AD programs are limited due to the highly dynamic
environment of autonomous driving and the probabilistic na-
ture of the algorithms for planning.

⋄ These authors contributed equally to this work.

Radar

Input Sensor Data

End-to-End Learning

Perception Localisation Planning ControlCamera

GPS /
IMU LiDAR Acceleration/Deceleration

Turning/Braking…

Autonomous Driving Control Algorithms Output Action

Cyber Attack Scenario

Corner Case Scenario
ADAssure Methodology

Assertion
Review and
Debugging

AD Data
Collection

Assertion
Generation

Or

Fig. 1: Comprehensive ADAssure methodology overview that illus-
trates each step of the process, from data collection to assertion
creation, review of assertions, and debugging.

Furthermore, in these studies, the analysis lacks the ex-
pertise from the algorithm designer and safety engineer to
inform on the nature of the behaviour of vehicle dynamics,
whether noise identified as irregular could be considered for
a control engineer within normal constraints, whether AD
behaviour could be considered a legitimate safety response
to an unexpected event and whether the parameters for which
the run-time solution is designed are appropriate for differing
class of vehicles with different dynamic profiles. We consider
the design phase to offer the most promising area of initial
investigation to improve the robustness of control algorithms,
which can be translated to real-world AD systems.

In this work, we propose ADAssure, a methodology for
debugging control algorithms during the design-time phase
of AD control software development (Fig. 1). ADAssure is
built upon the idea that the data of vehicle dynamics and
sensing of AD systems can be analysed for anomalous control
behaviour, which can then be transformed into assertions on
the AD control. We use association rules that enable us to mine
datasets of varying scales and fingerprint the pattern of anoma-
lous activity. These rules can be used to guide AD system
designers to focus on the debugging of the control algorithms.
To evaluate ADAssure, we focus on a control system algorithm
used in a real-world AD vehicular system providing ride-
hailing services. To summarise, the paper makes the following
contributions:

• We propose ADAssure, a methodology designed for de-
bugging AD control algorithms during the autonomous
system development’s design phase (see § II).

• To demonstrate our methodology’s feasibility, we applied
it to diverse datasets, revealing three new vulnerabilities
in Openplanner 2.5 AD, used in real-world vehicles.
(see § IV).

• We provide to the community our artifacts to enable
reproducibility and assist with developing efforts to im-

Association Rule Mining Time Notation Attack DetectionDatasets

Benign

Malicious
Assertion

Review and
Debugging

Pre-
processing Mining Time

Notation
Temporal Association

Rules (Assertions)
Association

Rules

Fig. 2: Phases for Assertion Generation

prove AD control system design. These artifacts in-
clude simulation datasets and real-world AD system data
(ADAssure Datasets).

II. ADASSURE: METHODOLOGY

The development of ADAssure has three main motiva-
tions. First, it aims to provide AD system designers with
a methodology to identify and fix vulnerabilities that align
with the design of AD algorithms. Second, given the ever-
changing nature of the autonomous vehicle system, it strives to
establish a structured methodology that allows for consistent,
flexible, and repeatable testing. Third, it aims to support
unit testing, allowing testing of individual components of the
autonomous system in isolation from other dynamic factors
affecting autonomous control.

The foundations of the ADAssure methodology are based on
the analysis of the vehicle dynamics and sensing data to guide
the creation of assertions of the vulnerability of the AD control
algorithms. The analysis consists of a sensitivity analysis
of vehicle dynamics data (e.g., velocity, yaw, and steering
angle), sensor data (e.g., lateral and longitudinal movement),
and visualisation of the trajectory of the AD system. This
helps identify key parameters to build assertions of the AD
control algorithms. The AD control system designers can use
the assertions to identify and locate the vulnerabilities of
the control model and develop mechanisms to test and fix
the errors. The ADAssure methodology comprises three main
phases: AD Data Collection, Association Rule Generation, and
Assertion Review and Debugging. Next, we will explore each
phase in more depth.

A. Autonomous Driving Data Collection
This phase consists of generating data from the real-world

system or simulation environment. The benefit of a simulation
environment is that driving scenarios can be automated or
designed to test a specific condition, such as a cyber-attack
or a corner case. The data output is structured according to
established metrics. These can be vehicle dynamics parameters
(yaw angle, velocity, etc.), sensing data (position co-variance,
point-cloud, etc.), and safety parameters (distance-to-collision,
etc.). The AD data is outputted in a format that can be
interpreted by analytical tools, in our use-case, .csv format.

B. Association Rule Generation Phase
The goal of this phase is to process the data generated

from the previous phase and produce a set of association
rules that can be translated into assertions in the Assertion
Review and Debugging phase. This phase is comprised of
three primary steps (as shown in Fig. 2): a) Association
Rule Mining, b) Time Notation, and c) Attack Detection. The
association rule mining is applied to both benign and malicious
datasets, resulting in two distinct sets of association rules.

Algorithm 1: Association rule mining & time notation
1 Input: N , D
2 Output: next[N] = antecedent→ next[N]consequent,
before[N] = antecedent→ before[N]consequent
/* Initialization and Preprocessing */

3 R = antecedent→ consequent
4 forall f ∈ D do
5 D′ = MoveUp(f(N))

/* Mining */
6 R← apriori(D′)

/* Time Notation */
7 if (R.antecedent == (t ∈ D′)) and (R.consequent ==

(f ∈ D′)) then
8 next[N]← label(R)
9 if (R.antecedent == (f ∈ D′)) and (R.consequent ==

(t ∈ D′)) then
10 before[N]← label(R)

These rules are then processed through the Time Notation
step to incorporate temporal information, yielding temporal
association rules (assertions) in the form of next[N] and
before[N] patterns. We define next[N] type of rule in the
general form of X → next[N]Y . This rule indicates that
when X occurs, after N time instants, Y will occur. N is a
positive integer value. Moreover, we define before[N] rule in
the general form of X → before[N]Y . This rule demonstrates
that whenever X happens, Y should have occurred N time
instants before that. The ”Attack Detection” step compares
these temporal association rules, ultimately detecting attacks
and anomalies within the datasets. Subsequent sections provide
a more in-depth discussion of each step.

a) Association Rule Mining: This step primarily serves
two objectives: pre-processing the datasets and subsequently
mining association rules from the preprocessed data. To mine
the association rules, apriori algorithm [6] was adopted and
enhanced to mine temporal rules capable of detecting attacks at
various time instances during autonomous vehicle (AV) oper-
ation. Algorithm 1 presents the details of the Association Rule
Mining and Time Notation steps. In this algorithm, D denotes
the dataset and D′ is the preprocessed dataset, while f and t
represent the dataset’s features and target values. To prepare
the dataset for mining the next[N] and before[N] temporal
patterns, all the features of the dataset are moved N records
above its original position (Line 5). However, the target of the
dataset remains as it is. Afterwards, the apriori algorithm is
applied to the preprocessed dataset to mine a set of association
rules. The output of this phase is a set of association rules in
the general form of antecedent → consequent that are ready
to be forwarded to the Time Notation step.

b) Time Notation: In this step, the method integrates
the concept of time into the association rules generated in
the association rule mining step, leading to a set of temporal
association rules. The method determines to which temporal
pattern (next[N] or before[N]) each extracted rule belongs
and subsequently assigns the corresponding time label to the
rule. If the antecedent value matches a target value in the
dataset, and the consequent value has already been moved
to another record in the dataset, the rule is labelled as a
next temporal association rule (Line 8). Otherwise, if the
antecedent of a rule mined in the association rule mining
step matches a dataset feature that has already been moved

https://www.dropbox.com/scl/fo/3vhgrua51kg5ao55bf95u/h?rlkey=fl2qqs85hsk4zrtlphjhp4dyr&dl=0

to another record and the consequent of the rule matches the
target value of the dataset, we label this rule as a before
temporal association rule (Line 10). The mined rules are
in the forms of antecedent → next[N]consequent, and
antecedent → before[N]consequent, serving as assertions
for debugging the AD system.

c) Attack Detection: This step aims to identify rules
indicating attacks on the AV. We assume that the sets of
mined rules from the benign and malicious datasets should
be similar under normal conditions, without any AV attacks.
Any deviation between these rule sets signifies an anomaly
in the autonomous vehicle. Per this assumption, the temporal
association rules (assertions) mined during the time notation
phase are classified into two sets. The first category comprises
rules exclusively mined from the malicious dataset, lacking
counterparts in the benign dataset. Any rule extracted solely
from the malicious dataset, without a corresponding counter-
part in the benign dataset, signifies an attack. These rules
reveal abnormal behaviour in the malicious dataset, contrasting
with different behaviour observed in the corresponding time
instance of the benign dataset. Consequently, we classify
these as attacks. The second category comprises similar rules
mined from both benign and malicious datasets, but with
different minimum support (min_supp) and minimum con-
fidence (min_conf) values. The variations in these values
indicate that, while the mined rules are similar, abnormal
behaviours and anomalies exist between the datasets. The
apriori algorithm employs these two metrics (i.e., min_supp
and min_conf). The min_supp value is the threshold and a
minimum value that is chosen by the expert to decide whether
a rule occurs frequently in the dataset or not [7], [8]. The
min_conf is the minimum value that is chosen by the expert
and is an indication of how often a rule has been found to
be true [6], [9]. Increasing the min_supp value results in
fewer association rules that describe more general behaviour
of the autonomous vehicle, while decreasing the min_supp
value leads to rules covering rare behaviours (corner cases).
Similarly, raising the min_conf value produces fewer but
more valid rules. Valid rules refer to association rules that
will not be violated with different attack scenarios like corner
cases. These values in the ADAssure facilitate an effective
attack detection process. The second category of rules aids
the ADAssure in effectively identifying corner cases and the
attacks that rarely occur on the AV. These rare attacks exhibit
behaviour very similar to normal vehicle operation but are
malicious and can lead to AV failure.

C. Assertion Review and Debugging
Within this phase, the association rules generated from

the association rule mining are reviewed in conjunction with
an analysis of the control behaviour and individual data
parameters to develop assertions. Trajectory maps of the AD
system and graphs, which demonstrate the sensitivity of the
data parameters during benign and cyber-attack scenarios, are
compared to the anomalous behavioural patterns detected by
the association rule mining tool. Using expertise from the
algorithm designer and safety validation engineer assists in
understanding which parameters can uniquely demonstrate a
vulnerability of an algorithm within the system. From devel-
oping an assertion on the system’s vulnerability, the debugging
effort focuses on a control flow analysis. As the assertion as-

Fig. 3: Localisation Algorithm Flow within AD System.

sists in pinpointing the specific module, the static analysis can
focus on the control flow of the substituent functions within the
module. As an example of the importance of this pinpointing,
a local-planning module could have 15 diverse algorithms,
and within these, each could have multiple different methods
or functions. As the code of AD algorithms are differential
equations, debugging can suggest optimisations that enable
mitigation mechanisms against the identified vulnerabilities.

III. AUTONOMOUS DRIVING CONTROL ALGORITHM

To evaluate the methodology, we focus on an AD control
algorithm used in a real-world AD ride-hailing service. Within
the AD pipeline, there are four key modules: localisation,
perception, planning, and control. Within our study, we focus
on the localisation and planning modules.

A. Localisation Module
This module provides accurate information regarding the

position and orientation of the vehicle. Using a Normal Distri-
butions Transform (NDT) matching search algorithm, it iden-
tifies the best matching position based on sensor perception.
It uses input from the Inertial measurement unit (IMU) and
the point cloud generated by the LiDAR. Then, it attempts to
match the points from our current scan to a grid of probability
functions derived from the map. NDT matching algorithms
can also benefit from the GNSS sensor, which provides
initial rough estimates of localization on geo-referenced maps,
thereby avoiding any sudden errors in localization calculations
that may result in failures. Fig. 3 displays the flow of the
localisation algorithm within the AD system.

B. Planning Module
For the AD system to plan a mission, firstly, a global planner

generates a global reference path using a vector (road network)
map. The function of the global planner is to stipulate a
route between the starting position and goal position of the
mission on the road map. The local-planner generates smooth
and obstacle-free trajectories in the operational local domain
following the global route. The local-planner consists of
several modules (see Fig. 4); trajectory generation, trajectory
evaluation, intention and trajectory estimator, object-tracker
and behavior selection (decision making) [10]. The trajectory
generation module generates alternative tracks parallel to the
main path defined by the global planner. These tracks are
named roll-outs. The trajectory evaluation module assesses all
possible roll-outs and the data input from sensed-data of the
AV and makes a cost estimation. The behaviour selector will
lead the AV to motion on a roll-out based on the least-cost.

IV. EXPERIMENTATION AND RESULTS

To evaluate the impact of corner cases on AD system
behaviour using the ADAssure methodology, we use datasets
of corner cases from simulation and real-world driving from

Fig. 4: Abstract Local Planning Algorithm Flow within AD System.

the target AD system. The 1st corner case scenario dataset is
of three diverse cyber-security attacks on the AD system con-
ducted in a simulation environment. As our focus is the plan-
ning and localisation algorithms, we used a low-fidelity sim-
ulation provided by Autoware.AI and the OpenPlanner
2.5 planning algorithm. The 2nd corner case scenario dataset
is of a Global Positioning System (GPS) spoofing event that
occurred on the AD system during its operation on the roads
of a capital city.

A. AD Control System Datasets

a) Cyber-security Corner Case Dataset: Within this
dataset, three attacks were conducted on the target AD vehicu-
lar system, which is attempting an overtaking manoeuvre. The
three attacks are classified as: 1) Lateral Position Offset Attack
2) Longitudinal Position Offset Attack 3) Message Time-Delay.
In the lateral and longitudinal position offset attack, an attacker
injects malicious data input into the lateral or longitudinal
pose whilst the AD vehicular system is in the process of the
overtaking manoeuvre (Fig. 5). This attack could be conducted
through GPS spoofing or interception and manipulation of
the localisation sensor data. The attacker introduces a delay
into the current_pose (lateral and longitudinal) sensor
messages reaching the AD control pipeline for the message
time-delay. The malicious data is injected at around the 21m
mark of the AV journey (travelled distanced) to the 67m. Each
attack was conducted 300 times, accommodating a variation
of different attack parameters. The lateral and longitudinal
attacks introduced a deviation ranging from 0.16% to 1.0%,
which equates to around 20 cm to 1m. The message time-
delay introduced delays of 0.3%, 0.6%, 1.0% second, as a
message is transmitted every 20ms, this range represents a
delay of 15 to 50messages. In total, the dataset comprises
over 1500 scenario runs of attacks and benign safety cases.

b) GPS Spoofing Real-World AV Dataset: The AD ride-
hailing service transmits its sensor data via a logging node to
an edge server, which stores the AD System data in a database.

Fig. 5: The threat model used for conducting the attack cases.

TABLE I: AD System Data.

AD Data Type Description

AV X Longitudinal Position of the AD System as to the HD Map
AV Y Lateral Position of the AD System as to the HD Map
AV Steer Steering Angle of the AD System
AV Vel Velocity of the AD System
AV Yaw Orientation of the AD System based on its centre of gravity
Roll-out Num Current Lane according to the lane selector of the AD

Control Algorithm
DTC Distance to collision of the AD vehicular system to the

overtaking vehicle.
Position Co-
variance

GPS position co-variance

Altitude Altitude derived from the GPS

During its operations near the port area of the city, the AD
vehicle encountered a loss of localisation from a GPS spoofing
event which also affected other GPS-enabled platforms. This
GPS spoofing continued intermittently throughout the preced-
ing months. The dataset used in this study is from the logging
system of AD ride-hailing service.

c) AD System Data: The simulation and real-world
datasets were structured to output data as shown in Table I.

B. Experimental Results
To evaluate the ADAssure methodology, we chose six attack

types and their corresponding safety (benign) scenarios. These
attack types included each of the aforementioned attacks with
differing levels of noise (lateral and longitudinal position
offset, delay message).

a) Automated Analysis: Utilising the ADAssure method-
ology on the three types of attacks yields three distinct set of
assertions corresponding to each attack type. The results of
the assertion generation phase are presented in Table II. The
threshold for minimum support (min_supp) is set at 0.01 ,
while the minimum confidence (min_conf) threshold is 1
Notably, the method exhibits a swift execution time. Within
the 3 attacks of the cybersecurity corner case dataset, the
assertions identify two patterns of anomalous AD behaviour.
Firstly, extreme steering angles of 20◦ and −20◦ and sudden
lane transition. Secondly, multiple lane-transitions combined
with the extreme steering angle and sudden changes in ve-
hicular velocity. This behaviour can be seen to be the effect
of cyber activity on the smoothness of the initiation of the
overtaking manoeuvre which results in turbulent movements
and in some cases, a collision event. The assertions generated
from the GNSS spoofing dataset identified the changes to the
altitude and position co-variance. These were consistent with
dramatic change in the values of the GPS coordinates and the
resultant change in altitude.

b) Assertion Review and Debugging: The patterns iden-
tified in the association rules enables us to extrapolate that the
Yaw angle and angular velocity are good reference point to
show the effect of cyber-attacks. During the injection of the
position offset attacks, the vehicle’s orientation demonstrates
dramatic action; in some circumstances, the vehicle can be

TABLE II: ADAssure Assertion Generation phase results.

Dataset Assertion Execution Time

Name #Records Total #Next[N] #Before[N]

Longitude 412 5 3 2 1ns
Latitude 356 7 7 0 1ns
Delay 417 5 3 2 1ns
GNSS 16 5 4 1 1ns

Fig. 6: Lateral position offset attack vehicle parameters.

Fig. 7: Longitudinal position offset attack vehicle parameters.
seen to be essentially spinning. As displayed in Fig. 6, the
Lateral Position Offset Attack displays the Yaw (angle) of the
vehicle making sharp changes, of 15 deg/sec from 15 meters
mark of the AV journey. This vehicle dynamic behaviour is
a characteristic also seen in both the longitudinal position
offset (Fig. 7) and delay message attack (Fig. 8). The results
for the velocity parameter demonstrate that it only indicates
immediate collision of the vehicle, and it does not support
early identification of anomalous vehicle behaviour. Assertion
1 contends that the AD system should not allow movements
that challenge the physical limitations of the steering model.

Assertion 1: To determine the vulnerability of
the yaw angle and momentum, we can derive
the assertion: AV.displacement of yaw angle >
max yaw angle threshold && time < time threshold.

The roll-out transition, steer, and distance-to-collision pa-
rameters demonstrate identifiable change during a cyber-

Fig. 8: Delay message attack vehicle parameters.

attack. The manipulation of the lateral and longitudinal posi-
tion alters the vehicle position on the map and, therefore, has
the effect of inducing greater transitions between roll-outs,
which is the effective position of the vehicle on the road.
The frequency of transition impacts the smoothness of the
steering angle. From the distance-to-collision parameter, it is
noted that the effect of the attack is most prominent during
the overtaking maneuver and mostly during the cut-in process,
when the vehicle cuts-in front of the passing vehicle (NPC).
Assertion 2 contends that when the vehicle transitions across
multiple roll-outs and displays 180◦ steering and closes to
less than 0.5m to the passing vehicle, this represents affected
behaviour from the cyber attack.

Assertion 2: To identify vehicle dynamic changes
from cyber-attack: AV.x − NPC.x < distance threshold
&& AV.lane transition > max transition number &&
AV.steer angle /∈ [min, max] steer angle

Assertion 3 contends with activity seen in the longitudinal
position offset (Fig. 7) where the AV collides with the passing
vehicle and then accelerates to the previous set-point.

Assertion 3: To identify collisions we can derive the
assertion: |AV.vk −AV.vk+1| > threshold.

Assertion 3 could also be used to detect anomalies in GPS
data. The GNSS spoofing attack demonstrates a significant
deviation in the altitude and position co-variance parameters.
Assuming that velocity data comes from two sources, a wheel
sensor measurement and calculated by deriving the position
from GPS data, the two results should be close to each other.
In the case of a GNSS spoofing attack, the deviation in the
position co-variance would generate a spike in the velocity
(calculated by deriving the position in GPS data), and thus
violating assertion 3.

For our specific AD system, the threshold for assertion 1 is
15◦ yaw angle displacement within 1 s duration. Assertion 2
threshold is identified as a distance between AV and passing

vehicle as less than 0.5m, lane transition greater than 1 roll-out
and steering angle that is outside the bounds of 20 and −20◦.
It is important to note that these values are valid for a low-
speed AV ride-hailing service and for designers of different
classes of vehicles, it is required to calculate values consistent
with their specific application.

Solvable bugs come from several points in the controller;
a simple one is wrong or imprecise saturation values of the
control signal, which generates a high acceleration or a high
steering angle in the vehicle. This is clearly visible in Fig. 7
where a signal overshoot causes the vehicle to change lane
multiple times. Another example, clearly visible in Fig. 6,7& 8
is the lack of a fallback plan. There is a clear indication of
a collision as the vehicle speed suddenly drops to 0m s−1

and then quickly accelerates to the reference point, this is a
violation of Assertion 3. A robust controller should have a
fallback plan for such a case which indicates a bug in the
functional design of the controller. In such a case, the vehicle
should be aware of the fact that the global trajectory cannot
be followed anymore and switch to emergency mode.

The main reason for searching for unexpected be-
haviours is to debug the controller, with reference to
the experimental results, a violation of Assertion 1 can
be associated to a bug in the /ndt_pose module (see
Fig. 3), while a violation of Assertion 2 can be back-
propagated to the module /op_trajectory_evaluator.
A violation of assertion three can be backpropagated
to the modules of /op_trajectory_generator and
/op_behaviour_selector (see Fig. 3). To pinpoint
the violation of assertion 3 to a specific function, we ab-
stracted from the local planner algorithm and its substituent
lane rule algorithm, the getClosestWaypointNumber
method, which selects the next waypoint to follow in the
global trajectory and returned an exception to be handled as a
different driving behaviour (e.g., there was a crash, emergency
mode activated).

In the case of GNSS attack, the NDT localisation algorithm
doesn’t detect the deviation in position co-variance, and this
is due to the normal vector pointing in the same direction.
Debugging focuses on optimisation of the NDT localisation
using visual odometry for holding the local position at short-
distances until the source of the disturbance has been resolved.

V. RELATED WORK

Recent publications on anomaly detection in vehicular AD
control systems propose the usage of vehicle dynamics as
a key detection indicator for cyber-attacks [11] [12] [13].
Studies such as Guo et al. [14] emphasise the effect cyber-
attacks have on the trajectory of the AD system and the
noise of individual sensors. Mitigation mechanisms focus on
two diverse approaches 1) implementation of an observer
of AD vehicle state estimation which can inform an emer-
gency action (sensor switching etc.) [14] 2) implementation of
trajectory smoothing algorithm to correct unplanned vehicle
behaviour [12] [13]. However, these solutions for detection
and mitigation are developed based on assumptions of driving
environment and algorithm configuration and this limits the
scope of their applicability.

VI. CONCLUSION

Cyber-attacks present new challenges to the design of AD
algorithms. Designers need methods to debug vulnerabilities to
improve robustness. In this paper, we introduced ADAssure, a
methodology for debugging AD algorithms during the design
phase. The methodology consisted of three phases; 1) AD
Data collection 2) Assertion Rule Generation 3) Assertion
Review and Debugging. The concept of the methodology was
to develop association rules from mining AD data which can
be transformed into assertions on the vulnerability of the
system.

Our evaluation of ADAssure on diverse cyber-security
datasets from simulation and real-world revealed that the
ADAssure method could identify three assertions on the
vulnerability of the OpenPlanner 2.5 AD planning al-
gorithm. These assertions were able to guide an algorithm
designer and safety engineer to pinpoint the specific modules
in the planning algorithm for debugging.

ACKNOWLEDGMENT

This work has been supported by the European Commission
through the European Union’s Horizon 2020 Research and
Innovation Programme, under grant agreement No 101021727.

REFERENCES

[1] Bosch, “Facts and figures about electronics and software in vehicles,”
Automotive World, July, 2021.

[2] W. Zeng, M. Wu, P. Chen, Z. Cao, and S. Xie, “Review of shared online
hailing and autonomous taxi services,” Transportmetrica B: Transport
Dynamics, vol. 11, no. 1, pp. 486–509, 2023.

[3] K. K.-C. Chang, X. Liu, C.-W. Lin, C. Huang, and Q. Zhu, “A safety-
guaranteed framework for neural-network-based planners in connected
vehicles under communication disturbance,” in 2023 Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2023.

[4] R. Jiao, H. Liang, T. Sato, J. Shen, Q. A. Chen, and Q. Zhu, “End-to-
end uncertainty-based mitigation of adversarial attacks to automated lane
centering,” in 2021 IEEE Intelligent Vehicles Symposium (IV), 2021.

[5] X. Liu, R. Jiao, B. Zheng, D. Liang, and Q. Zhu, “Safety-driven interac-
tive planning for neural network-based lane changing,” in Proceedings
of the 28th Asia and South Pacific Design Automation Conference, ser.
ASPDAC ’23. Association for Computing Machinery, 2023.

[6] J. Han, M. Kamber, and J. Pei, “6 - mining frequent patterns, associ-
ations, and correlations: Basic concepts and methods,” in Data Mining
(Third Edition), ser. The Morgan Kaufmann Series in Data Management
Systems. Boston: Morgan Kaufmann, 2012, pp. 243–278.

[7] M. Zaki, “Scalable algorithms for association mining,” IEEE Transac-
tions on Knowledge and Data Engineering, 2000.

[8] M. R. Heidari Iman, J. Raik, M. Jenihhin, G. Jervan, and T. Ghasem-
pouri, “An automated method for mining high-quality assertion sets,”
Microprocessors and Microsystems, vol. 97, p. 104773, 2023.

[9] M. Shahin, M. R. Heidari Iman, M. Kaushik, R. Sharma, T. Ghasem-
pouri, and D. Draheim, “Exploring factors in a crossroad dataset using
cluster-based association rule mining,” Procedia Computer Science,
2022.

[10] H. Darweesh, E. Takeuchi, and K. Takeda, “Openplanner 2.0: The
portable open source planner for autonomous driving applications,” in
2021 IEEE Intelligent Vehicles Symposium Workshops, 2021.

[11] Z. Ju, H. Zhang, X. Li, X. Chen, J. Han, and M. Yang, “A survey on
attack detection and resilience for connected and automated vehicles:
From vehicle dynamics and control perspective,” IEEE Transactions on
Intelligent Vehicles, vol. 7, no. 4, pp. 815–837, 2022.

[12] Y. Ma, J. Sharp, R. Wang, E. Fernandes, and X. Zhu, “Sequential attacks
on kalman filter-based forward collision warning systems,” in AAAI
Conference on Artificial Intelligence, 2020.

[13] J. Shen, Y. Luo, Z. Wan, and Q. A. Chen, “Lateral-direction localiza-
tion attack in high-level autonomous driving: Domain-specific defense
opportunity via lane detection,” 2023.

[14] J. Guo, L. Li, J. Wang, and K. Li, “Cyber-physical system-based path
tracking control of autonomous vehicles under cyber-attacks,” IEEE
Transactions on Industrial Informatics, 2023.

	Introduction
	ADAssure: Methodology
	Autonomous Driving Data Collection
	Association Rule Generation Phase
	Assertion Review and Debugging

	Autonomous Driving Control Algorithm
	Localisation Module
	Planning Module

	Experimentation and Results
	AD Control System Datasets
	Experimental Results

	Related Work
	Conclusion
	References

