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Abstract—Modern privacy-enhancing technologies reach new
forms of computation and data privacy according to a statement
(e.g. private value > 100). However, beyond the statement expres-
sion, the description of a private computation circuit requires
knowledge of security algorithms protecting private values. To
keep the description of private and compliant computation cir-
cuits as close to the statement expression as possible, we introduce
a new composable policy language called zkPolicy. Further, we
introduce a policy transpiler, called zkGen, to decouple the
complexity expressed via zkPolicy from the complexity of the
underlying security algorithms. Our results show that, with
zkPolicy, the description of compliant data provenance circuits
can be reduced from 957 to 22 lines of code. And, with zkGen, we
automate the generation and composition of private computation
circuits to a minimum effort of configuring a zkPolicy.

Index Terms—Transpiler Software, Policy Language, Verifiable
Policy-compliant Computation, Zero-knowledge Proofs

I. INTRODUCTION

Through Privacy-enhancing Technologies (PETs) such as
Zero-knowledge Proof (ZKP) systems, data and computational
privacy achieve new forms of compliance, where compliance
holds against a public statement. The statement typically
expresses single or multiple relations that hold on the argu-
ments which are kept private during the privacy-preserving
computation. Even though statements can be as simple as a
comparison of two variables (e.g. bank balance > 10.000$),
the security protocols keeping variables private might rely
on complex cryptographic suites and many algorithms. For
instance, to prove the data provenance of web traffic, current
ZKP circuits prove unambiguous mappings between an Appli-
cation Programming Interface (API) values and parameters of
a Transport Layer Security (TLS) session and, with that, reach
constraints in the range of millions [1]–[4]. Thus, creators of
privacy-preserving computation circuits need domain-specific
knowledge to link security algorithms to private variables and
cannot solely specify circuits via a public statement.

With upcoming proofs of web interactions [3], [5], policy-
compliant computation [6]–[8], configurable network poli-
cies [2], and verifiable credential applications [9], not only the
efficiency requirements of PETs grow. More importantly, users
become exposed to selecting or configuring public statements
to express the desired interaction. As such, users implicitly
become the creators of circuits. The custom selection and
combination of statements introduces a new dynamic, which is
currently not covered by frameworks that implement PET sys-
tems. Instead, current frameworks provide privacy-preserving
subcircuits which are referred to as gadgets. Gadgets are, by
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Fig. 1. Overview of the zkGen software architecture which, based on a gadget
library, transpiles a policy-specific circuit description (e.g. zkPolicy) into a
constraint-based representation of a ZKP circuit.

default, not connected to any statements such that every circuit
with compliance against a statement depends on a manual
composition of gadgets to asserts the statement.

As a remedy, our work introduces a transpiler architec-
ture to automatically compose statement-compliant circuits of
privacy-preserving computations. Our transpiler, called zkGen,
relies on a domain-specific policy to parse the desired public
statements. For instance, to generate ZKP circuits, zkGen
takes in a ZKP-specific policy written in a new zkPolicy
language. With the zkPolicy language, we focus on a higher-
level description of ZKP circuits at a statement level and
rely on an abstraction layer, the gadget library, to connect
statement arguments to the variables of security algorithms.
Thus, taking as input a zkPolicy and the gadget library, zkGen
outputs a constraint-based circuit description written in a
Domain Specific Language (DSL) (cf. Figure 1). With that,
any general-purpose ZKP framework supporting the DSL is
able to process the constraint-based circuit and, if applicable,
generate blockchain verification code (e.g. Solidity code for
the Ethereum Virtual Machine (EVM)).

Hence, with zkGen, the automated and composable gen-
eration of compliant private computations takes a next step
towards a simple description with less lines of code than
constraint-based circuit descriptions. Further, circuits with
outdated or insecure gadgets can be easily reconfigured by
updating a single keyword in a zkPolicy. In short,

• We propose a policy language called zkPolicy, which ex-
presses ZKP circuits via statements and gadget identifiers.

• We open source the zkGen toolkit which automatically
generates ZKP circuits according the zkPolicy language.

II. BACKGROUND

The background outlines the preliminaries of security algo-
rithms, zero-knowledge proofs, and transpilers.



A. Zero-knowledge Proofs (ZKPs)

ZKPs became prominent by securing cryptocurrencies to re-
main private but publicly verifiable [10]. ZKP technology gives
a prover the opportunity to convince a verifier of knowing a
private input to a ZKP computation. The ZKP computation
validates the private input against a public statement. Upon
receiving a proof of a ZKP computation from the prover, the
verifier validates the proof and learns nothing except, whether
or not, the private input complies with the public statement.
The field of verifiable credentials uses ZKPs to prove knowl-
edge of signatures on data which is further asserted against
public statements (e.g. age verification) [11]. Network policies
rely on ZKPs to validate traffic compliance against block or
allow lists [1], [2]. Data provenance protocols use ZKPs to
validate integrity and non-ambiguity of TLS data [3], [12].

ZKP systems rely on separate data representations to
achieve the desired functionality. For instance, ZKP systems
translate a constraint-based description of a computation into
a provable arithmetic encoding via a frontend stack [13]. The
arithmetic representation can be evaluated by the respective
backend stack of the ZKP system. As of today, different
DSLs exist to describe the frontend, backend, or intermediate
encodings of a computation circuit. Additional tooling exists
to compile regular programs into ZKP circuits [14] or to
provide interoperability between different ZKP encodings [15].
However, no tooling generates ZKP circuits at the abstraction
level of policy compliance, which our work addresses.

B. Security Algorithms

In this work, we primarily focus on security algorithms
which, expressed via ZKP circuits and combined with data
assertions, achieve a compliance notion of confidential data.
As such, we apply encryption algorithms, cryptographic com-
mitments, digital signatures, or secure channel protocols to
construct compliant and secure ZKP circuits. For instance,
cryptographic commitments as a tuple of algorithms (commit,
open) protect a data and witness pair under a commitment
string with the commit algorithm. The open algorithm succeeds
only if a non-ambiguous data and witness pair is validated
against a commitment string. If the open algorithm is executed
in a ZKP circuit and the witness and data pair are used
as private variables, then a verifier, which evaluates a proof
against a public commitment string, does not learn anything
beyond the commitment validity.

C. Transpiler

Transpilers are source-to-source compilers which translate
languages with comparable abstraction levels. The zkGen tran-
spiler of this work translates a ZKP-specific policy language,
called zkPolicy, into a constraint-based DSL of a ZKP system.
With the ZKP system, the transpiler continues to compile and
generate ZKP-specific parameters and code which can be used
in the context of open decentralized systems.

1 {"name": "zkPolicy_tls13openSessionCommit",
2 "relations":[{
3 "value": {
4 "type": "s-string",
5 "size": 5,
6 "protection": {
7 "algorithm": "secure_channels:

openRecord_TLS13AES128GCMSHA256",
8 "parameter": "value"
9 }

10 },
11 "number": {"type": "p-integer"}
12 }],
13 "constraints": [
14 "0:value->-0:number",
15 "0:value:protection:algorithm:key-=-

commitments:mimc:message"
16 ]
17 }

Fig. 2. JSON file expressing a ZKP circuit with the zkPolicy language.

III. ZKPOLICY LANGUAGE

The zkPolicy language gives the opportunity to describe a
ZKP circuit by connecting policy-relevant variables in a new
data model (cf. Section III-A). The data model builds upon a
gadget library abstraction layer which groups ZKP subcircuits
according to security algorithms (cf. Section III-B).

A. Data Model

The zkPolicy language allows configurations based on the
following data model, where
Relations are objects connecting two argument.
Arguments are key-value pairs, where keys express the name
of an argument. Argument keys are unique in the scope of
a relation. Argument values are objects with three key-value
pairs; a type, a size, and a protection.
Types specify if the argument counts as secret or public by
concatenating a "s-" or "p-" with an argument type t. Currently,
zkGen supports two argument types with t∈{string, integer}.
Sizes specify the number of characters in an argument of type
t=string and do not exist for arguments of type t=integer.
Protections use objects as values and rely on two key-value
pairs to connect an argument to a security algorithm. To do
so, protections point to a security algorithm of the gadget
library via a string identifier "algorithm_type:algorithm_id"
(cf. Figure 2). Further, protections map an argument to a
security algorithm parameter via the "parameter" key.
Constraints are strings expressing assertions between elements
such as arguments, protections, or both. Assertions rely on
comparison operators (e.g. <,>,∈, etc) between two dashes.
Multiple dashes express a logical OR between appended
elements and the first element. Multiple constraints on the
same element express a logical AND. The key words if and
for follow a transpiler-specific syntax and are used to ex-
press conditions and loops. If constraints reference protection
parameters, the protection string identifier is combined with
the parameter name. If constraints reference arguments, the



1 {"commitments": {
2 "mimc": {
3 "commit_string":
4 {"type": "p-string", "size": 32 },
5 "witness":
6 {"type": "s-string", "size": -1},
7 "message":
8 {"type": "s-string", "size": -1}
9 }}}

Fig. 3. Simplified entry of the gadget library that defines the parameters
of an mimc hash computation. The presented algorithm_type falls to the
cryptographic commitments category and the algorithm_id is the keyword
"mimc". Parameters of arbitrary size are indicated with a size=-1.

relation index is combined with the argument key or argument
path towards a protection parameter.
zkObjects represent a complete zkGen policy configuration
using the zkPolicy language (cf. Figure 2). The zkObject
comprises three key-value pairs which define a list of relations,
a list of constraints, and a name.

B. Gadget Library

The gadget library abstracts security algorithms to public
and private parameters and uniquely defines algorithmic ab-
stractions by grouping identifying names per algorithm under
algorithm types (cf. Figure 3). Notice that the zkGen transpiler
requires an implementation of every gadget in the DSL of the
respective PET system. The gadget library currently supports
different abstractions, where
Cryptographic commitments depend on a commitment string
as the public parameter and a witness and a message as the
private parameters (cf. Figure 3).
Encryption algorithms currently exist in two forms, where
symmetric, asymmetric, and the one-time-pad encryption al-
gorithms depend on a plaintext and a key as the private
parameters and a ciphertext as the public parameter. Encryp-
tion algorithms in the counter mode require additional public
parameters with an initialization vector and a block index.
Digital signatures are represented via two private parameters
with the message and the signature value itself and a public
key as the public parameter. In the context of anonymous
credential systems [16], [17], proving knowledge of signatures
is combined with a statement evaluation of the signed data.
Secure channels are constructed by the composition of an en-
cryption gadget and a single or multiple commitment gadgets.
In the context of data provenance proofs [1], [3], [12], [18],
ZKP circuits allow users to validate web traffic secured by
TLS against a statement (e.g. bank balance > 100$).

C. Compositions

The zkPolicy together with the gadget library allow the
composition of multiple relations in a single policy, where
relations are linked together by constraints. For example,
credential chaining as introduced in the work [16] can be
achieved by using two relations r1, r2 with arguments that
refer to the respective credential values via the constraints:

1) "0:age->-0:number"
2) "1:age-<-1:number"
3) "0:age:p:a:commit_string-=-1:age:p:a:commit_string"
4) "0:age:p:a:witness-=-1:age:p:a:witness"

Here, the characters "p:a" shorten the "protection" and "algo-
rithm" path keywords of the zkPolicy language and the indices
0,1 refer to the relation indices. Credential chaining is used to
bind proofs towards multiple credentials.

IV. ZKGEN TRANSPILER

The following subsections introduce the components and
capabilities of the zkGen transpiler as a command line toolkit.

A. Gadget Parser

Before a policy is parsed, the transpiler reads in the gadget
library in form of a library.json file. In the next stage, the
transpiler iterates over all security algorithms of the gadget
library and searches for every gadget implementation. To
successfully parse a gadget implementation, gadgets must be
written under certain rules. Independent of the DSL a gadget is
written in, zkGen relies on specific comments to facilitate the
gadget parsing. Since gadget implementations can grow into
many files and folders, a typical comment location is before
the beginning and end of a circuit definition. If the gadget
exists as a module, then comments must indicate the module
name to enable seamless imports of other gadgets.

B. Policy Parser

The policy parser reads in policies as JavaScript Object
Notation (JSON) files and iterates over the relation arguments
to identify a list of protection algorithms per argument. The
sequence of protection algorithms is arranged by the constraint
interpreter (cf. Section IV-C) and used to identify gadget
implementations for the composition of a circuit model (cf.
Section IV-D). If an argument is of type string, the policy
parser extends the list of protection algorithms at an argument
with an extra gadget that converts the input argument to an
aggregated integer representation. We present the string-to-
integer conversion logic in the Formula 1, where the function
ascii(stri) returns the American Standard Code for Infor-
mation Interchange (ASCII) number of a string character and
len(str) indicates the length of the string str.

aaggr =

len(str)∑
i=0

10i · (48− ascii(strlen(str)−i)) (1)

In the next stage, the parser module reads in and shares the
list of constraints with the constraint interpreter module.

C. Constraint Interpreter

The constraint interpreter processes the list of protection
algorithms and constraints and creates data attributes for the
template engine. By iterating over the lists of the policy
parser, the constraint interpreter removes duplicate references
of the same security algorithm such that the circuit template
instantiates every required security algorithm once. Any con-
straint duplicates per argument are removed as well. Next,



the constraint interpreter builds a list of data attributes to
encode the string-to-integer conversion per input argument.
The second list of data attributes is used to instantiate and
sequentially apply protection algorithms to arguments. The last
list of data attributes encodes constraint checks between public
and private arguments. The constraint interpreter throws errors
if private arguments potentially leak information (e.g. equality
check of private argument against public argument).

D. Circuit Models & Template Engine

The output of the transpiler is generated based on a circuit
model which zkGen maintains via a template engine. To start
the composition of the circuit model, zkGen uses the template
engine to add all string-to-integer conversion gadgets per
input argument. Next, the required protection algorithms per
argument augment the circuit model. To add the protection
algorithms to the circuit model, zkGen relies on the parsed
gadget implementations and the second list of data attributes
of the constraint interpreter. If a security algorithm is called
multiple times, then the circuit model resets all initialization
variables of the algorithm. Last, the template engine adds
individual constraints per argument to the circuit model.

In the end, zkGen generates circuits by executing the tem-
plate engine on a circuit model. The outputs of the template
engine are strings which are stored in unique output folders.
Before a string is stored, zkGen determines the filename
extension of output files based on the DSL the circuit is written
in. The zkGen transpiler supports the generation of testing
suites. However, to generate a test, the values of private and
public arguments must be provided in a test configuration. The
execution of a generated test suite depends on an installation of
the desired ZKP system. If the ZKP system is installed, zkGen
supports the generation of blockchain code (e.g. Solidity) that
verifies the generated circuit.

V. EVALUATION & DISCUSSION

The evaluation summarizes the transpilation results and
optimizations and compares zkGen against related works.

A. Transpilation Results

Our implementation1 of zkGen relies on the text/template
package as the template engine and uses the gnark ZKP
framework [19] to (i) generate the ZKP verification code
in Solidity and to (ii) compute, verify, and test ZKPs. The
zkPolicy language reduces the description complexity of a
policy-compliant ZKP circuit with regard to Lines of Code
(LOC). Further, our toolkit achieves transpile times in the
range of milliseconds (cf. Table I).

B. Related Works

The work zkDocs [9] introduces a transpiler toolkit to
generate customizable privacy documents based on readable
JSON schemas. Schemas of zkDocs let users define lists
of fields, constraints, and trusted institutions, where fields

1https://github.com/jplaui/zkGen

TABLE I
ZKGEN TRANSPILER BENCHMARKS.

zkPolicy LOC policy LOC circuit Transpile Time

TLS 1.3 commit 975 22 2.38 ms
Age commit 85 20 1.70 ms

are protected by commitments and asserted against defined
constraints. Every constraint follows the syntax

<fA><SUB/ADD><fB><LT/GT><const/fComp> (2)

with fields f , the subtract and addition operators as SUB,
ADD, and the comparison constraints larger than or greater
then as LT, GT. The list of trusted institutions is used as an
access control list to protect attestations on commitments. The
generated circuit computes a fixed commitment check for each
schema field and adds constraints, as additional assertions, on
fields. In contrast to zkDocs, the zkGen can generate circuits
with multiple distinct security algorithms and introduces a
flexible zkPolicy language with enhanced expressiveness.

The work DataCapsule [20] uses a flexible policy language
called PrivPolicy with complete expressiveness. In contrast to
zkGen, DataCapsule statically analyzes programs to guarantee
policy-compliant data processing but does not generate policy-
compliant programs. However, since ZKP circuits do not
support differential privacy [21], we deem DataCapsule as an
interesting related work to investigate if differential privacy
compliance could be added to the generation of ZKP circuits.

C. Limitations & Future Work

The zkGen toolkit supports the generation of ZKP circuits
only. With Multi-party Computation (MPC) or Homomorphic
Encryption (HE) as other PETs, we deem the generation
compliant MPC or HE circuits as future work. Secondly, as
the zkPolicy language lacks a formal definition and we see the
formal definition of the zkPolicy language and the integration
of toolkits which formally verify generated circuits as future
work. The goal of formalizing the zkPolicy language is to
attribute generated circuits with privacy guarantees.

VI. CONCLUSION

This work automates the policy-compliant and composable
generation of computational privacy via a transpiler architec-
ture. Instead of manually configuring computational assertions
with regard to a policy, we introduce a new policy language to
describe and connect private computation variables to policy
statements. The policy language delivers a concise description
of compliant and private computation circuits with a fraction
of code lines compared to constraint-based circuit descriptions.
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