
DyST: Dynamic Specification Mining for
Heterogenous IoT Systems with WoT

Ege Korkan1[0000−0003−4910−4962], Silvia Oliva Ramirez2[0009−0001−4340−7594],
and Sebastian Steinhorst2[0000−0002−4096−2584]

1 Siemens, Munich, Bavaria, DE ege.korkan@siemens.com
2 Technical University of Munich, Munich, Bavaria, DE silvia.ramirez;

sebastian.steinhorst@tum.de

Abstract. The comprehension of a distributed system and its verifica-
tion is one of the most challenging problems in today’s software engi-
neering, commonly referred to as observability. The complexity increases
when one cannot control all the components, like in IoT systems com-
posed of third-party devices. The Web of Things standards by the W3C
help with this by describing what one can do with an IoT device via net-
work messages. However, no work has leveraged these standards to offer
an observability solution that works with any set of IoT devices. This
work addresses this gap by proposing a method to verify the correctness
of the system by mining its specification from device interactions. Our
approach can reverse engineer complex application logic in the form of
UML Sequence Diagrams from the analysis of network messages of any
protocol between the devices during system runtime, which can be used
to programmatically assert the correctness of the mined specification.
We have evaluated our approach with three case studies to assess our
mining technique, the performance of our algorithms, and the applica-
bility of our contributions to system verification in the IoT. Our results
show that our approach can produce accurate Sequence Diagrams that
help understand and verify the behavior of IoT systems.

Keywords: Internet of Things · Process Mining · Web of Things

1 Introduction

The Internet of Things (IoT) has become a key enabler of today’s emerging tech-
nologies, entering our daily lives through Internet-connected devices. However,
its exponential growth has spawned numerous IoT platform providers and man-
ufacturers, each designing devices to function within distinct frameworks and
technical environments, leading to interoperability challenges. The absence of
best practices or standards has resulted in the proliferation of diverse technolo-
gies and implementation methods, causing significant fragmentation in the IoT
domain and necessitating substantial integration and development efforts.

To tackle this interoperability challenge, the World Wide Web Consortium
(W3C) introduced the Web of Things (WoT) [18], an architecture aimed at fos-
tering interoperability across IoT platforms and application domains. Central to

2 E. Korkan et al.

IP-level Interactions
Sequence Diagram

Code generation

and deployment

SD

{ }

Capture scenario

traces

SD

{ }

FSM

Scenario

traces

Detection of

control flow

Conversion

Correct behavior Faulty behavior

Generate

Sequence

Diagram

a)

b) c) d)

e)

f)

Check system

correctness

Fig. 1: Approach overview. State-of-the-art techniques are marked with dashed lines
while our contributions are drawn with continuous lines. a) System design (with a
System Description (SD)) and code deployment. b) During normal system execution,
communication traces for various scenarios are obtained. c) Traces are analyzed, loops
and branches detected, and a Finite State Machine (FSM) is constructed. d) Based
on the FSM, a Sequence Diagram (SeqD) is generated. e) The SeqD is automatically
converted to an SD. f) Both SD files are compared to verify system correctness.

this architecture are Thing Descriptions (TDs) [19], which provide a standard-
ized format for uniformly describing the network-facing capabilities of a Thing.
Given that individual IoT devices may lack complex functionalities, they are
often combined to perform common tasks, known as Mashups. These can range
from automatic irrigation systems in smart farms to item-sorting systems in
factories or even turning on lights when a presence is detected in a smart home.

1.1 Problem Statement

As distributed IoT systems like Mashups grow larger and more complex, the
need to understand their behavior and to support their verification becomes
more important. Verification techniques that target a distributed system before
its full operation can only be partially representative of the executions in the
field, which results in a large difference between the assumed behavior during
the design and the actual behavior of the system.

So far this has been addressed by specification mining techniques, which are
commonly used to derive the specification of a program using examples of cor-

DyST WoT 3

rect usage to aid program understanding. Besides helping with comprehension,
mined specifications are useful for supporting quality assurance and for examin-
ing the relationships between the actual behavior of a system and its designed
specification. However, state-of-the-art specification mining techniques are un-
able to address the various protocols and platforms that are present in the IoT.
As a result, such techniques are not applied to real IoT systems and IoT systems
lack the benefits of well-established specification mining techniques to allow their
verification.

1.2 Approach and Contributions

To improve the management of WoT Mashups, [9] introduced the WoT Sys-
tem Description (SD), which can interchangeably represent a Mashup in a well-
defined text format or a graphical manner with a subset of the Unified Modeling
Language (UML) Sequence Diagram [5]. This work builds on top of the System
Description, which represents the system behavior description our approach tries
to mine. More specifically, we introduce DyST, a method and a corresponding
implementation as a solution to automatically observe IoT systems by analyzing
the communication traces produced during the normal execution of the system
and building a corresponding System Description. Fig. 1 shows an overview of
the approach, where state-of-the-art techniques are combined with our contri-
butions. In particular, we make the following contributions:

– We propose a new protocol-independent format for representing communica-
tion traces between devices in the WoT that focuses on application semantics
and operations.

– We present a method and its open-source implementation3 that takes mul-
tiple communication traces from different behavioral scenarios as input and
generates UML-compliant Sequence Diagrams and System Descriptions (SDs).

– We perform a full evaluation of our method with transformations from com-
munication traces to SDs using three different case studies to prove its appli-
cability for checking a system’s correctness as well as its time performance.

The rest of the paper starts with highlighting the background information
and related work in Section 2. Section 3 explains the scientific contributions, as
well as the implementation. Section 4 presents the evaluation methodology and
results, and Section 5 concludes and proposes future work directions.

2 Background and Related Work

To target distributed systems with third-party devices to mine their behavior,
this work builds on top of well-established methods found within the WoT,
Specification Mining, and Specification and Modeling of Distributed Systems.

3 Also referred to as our repository, it is available at https://github.com/tum-esi/
dyst-wot-miner

4 E. Korkan et al.

2.1 Web of Things

The WoT encompasses standards at the W3C, focusing on Things that expose
Interaction Affordances through well-described network interfaces. This enables
Consumers such as applications, cloud services, or browsers to interact with
them.

The TD [19] defines a standardized metadata format and vocabulary to de-
scribe functionality and interactions across networked Things. The TD is the
main building block of the WoT and is extended with various Binding Tem-
plates [13] to describe various IoT protocols so that a Consumer can send the
correct protocol messages to the Thing. The Interaction Affordances are catego-
rized into three:

– Properties can be read, written, and observed, and represent a state of the
Thing, such as a sensor value.

– Actions can be invoked and execute a function of the Thing, which might
manipulate its state, e.g. executing a movement.

– Events can be subscribed to and result in a notification each time the event
occurs, for example, notifying when a person is detected.

WoT System Description: The SD introduced in [9] extends the capa-
bilities of a TD by providing additional keywords to describe the composition
of WoT Things. To this end, SD introduces a means to specify the execution
of interactions and to represent application logic that consists of programming
structures, e.g. if statements, for loops, and wait statements.

2.2 Specification Mining

Specification mining is a program analysis method deriving program specifica-
tions from correct usage examples. [16] summarizes works in this field, ranging
from early papers like [3] to recent ones. Specification mining techniques are
categorized based on the input data source such as parsing program source files,
analyzing execution traces obtained during runtime, or using a combination of
both approaches. These are called Static Specification Mining, Dynamic Speci-
fication Mining, and Hybrid Specification Mining, respectively.

IoT systems, influenced by both environment and device programs, are highly
dynamic. They comprise devices from diverse manufacturers, often inaccessible
in terms of source code. With these aspects in mind, we focus on Dynamic
Specification mining techniques in this work.

Dynamic Specification Mining: Dynamic specification mining can pro-
vide an accurate representation of a system’s behavior because the analysis is
performed entirely during runtime. In general, dynamic specification mining is
based on the analysis of so-called execution traces. The simplest way to obtain
execution traces is to instrument the source code [2, 6, 8] or rely on custom de-
buggers [22,23]. A smaller number of techniques [14] obtain the needed traces by
analyzing the interactions between devices connected to the network. This can
be accomplished by sniffing the network and collecting communication traces,

DyST WoT 5

i.e. all necessary information about method calls, including callers and callees.
This work uses communication traces since in WoT systems there is no guarantee
to access the Things’ source code or the Mashup application logic.

Scenario traces: A single program run generating a single trace may not
capture the application behavior due to missing repetitions or conditional al-
ternatives. To get a complete view of the program’s behavior, it is necessary
to obtain traces that represent different behavioral scenarios and thus cover all
possible options. This collection of traces is called scenario traces in the rest of
this work.

Testing of Things: To enable verification of individual WoT things, [12]
proposes to do an affordance coverage test where their contributions interact
with Things over the network and send well-planned requests to execute each
affordance with different inputs. However, it influences Things and their physical
environment, making it unsuitable for the normal working mode of a Thing.

2.3 Specification and Modeling of Distributed Systems

Specification languages and graphical representations are well-established meth-
ods that aid program documentation, development, and testing. The relevant
methods for this work are briefly summarized below, together with how they
relate to our method.

Finite State Machines (FSMs): FSM-derived specifications, based on [7],
effectively model historical software behavior patterns. They are intuitive and
powerful to represent recurring patterns of behavior, especially for sequencing,
selection, and iteration. By an FSM, we mean a deterministic transition state
machine, also known as a deterministic finite state machine or Deterministic
Finite Automata (DFA).

The simplicity and power of FSMs have spurred techniques to reverse-engineer
software applications, generating FSMs as final or intermediate representations
for complex behavioral models like Regular Expressions. Here, FSMs are em-
ployed to infer software behavior, detecting loops and branches before trans-
forming them into more complex models such as UML Sequence Diagrams.

UML Sequence Diagrams: UML Sequence Diagrams visually represent
program behavior by illustrating interactions among software system objects.
They depict system flow using incoming and outgoing messages, following a
standardized representation defined in the UML specification [5]. In this work,
we employ UML Sequence Diagrams, specifically the subset defined in [9], to
depict behavior extracted from communication traces.

3 DyST Approach

In this work, we consider dynamic specification mining of IoT systems by reverse
engineering Sequence Diagrams from execution traces. Our goal is to extract
a Sequence Diagram that is WoT-compliant and can be further transformed
into a System Description for system verification. Fig. 2 shows a more detailed
overview of our approach, which is composed of the following steps that are
further elaborated in the subsequent sections:

6 E. Korkan et al.

DFA creation
Transformation

into Regex

Sequence

Diagram

extraction

Sequence Diagram1·2 (3·4 + (5·6·7)*) DFA

Scenario

traces

1 2 3 4

Fig. 2: Detailed approach overview. 1) The scenario traces collected during the program
execution are the input to the algorithm that creates the DFA (2). 3) Based on the
DFA of the system, a Regular expression is obtained. 3) A mapping from the Regular
Expression to the Sequence Diagram is implemented in the last step.

– In step 1, the scenario traces obtained during normal system execution are
parsed, sorted, and modified to follow a format we propose for representing
communication traces between devices in the WoT.

– For control flow detection, in step 2 we create a DFA to obtain an overall
representation of the system behavior. This creation is based on model infer-
ence algorithms and the minimization of the state transition diagram using
transition manipulation formulas.

– With step 3 we create a Regular Expression following the Transitive Closure
Method, which is a recursive technique that builds a collection of Regular
Expressions that gradually describe bigger groups of pathways in the DFA’s
transition diagram. This intermediate step helps to extract Sequence Dia-
grams from the minimized DFA and ensures that they are trace equivalent.

– The resulting Regular Expression is transformed into a UML Sequence Di-
agram in the last step in Fig. 2 by performing its tokenization and applying
a recursive algorithm to build the application logic.

3.1 Communication Traces Format

In this work, we propose a new format for representing communication traces
between devices in the WoT. It is based on how messages can be abstracted as
explained in the WoT architecture standard of W3C [18], which defines the basis
of communication as the union of two main entities: a Thing and a Consumer.
Our format uses application semantics and operations which makes it protocol-
independent. We define the atomic element that composes each communication
trace as an interaction, which is a message captured during communication be-
tween two objects in a WoT system as seen in Listing 1.14.
4 Our open-source repository has further examples of the format as well as a schema

for the validation of traces.

DyST WoT 7

1 [{
2 interactionId: 1, messagePairId: 1,
3 recipient: {type: "thing",thingId: "1", thingTitle: "

MyCoffeeMaker "},
4 operation: "readproperty",
5 affordance: {type: "property",name: "state"},
6 timeStamp: "2023 -12 -04 T03 :04:16.01" ,
7 },{
8 interactionId: 2, messagePairId: 1,
9 recipient: {type: "controller "},

10 payload: "ready",
11 timeStamp: "2023 -12 -04 T03 :04:16.02" ,
12 }]

Listing 1.1: Interaction format example with a trace of a request-response pair.

3.2 DFA Creation

A common practice in specification mining techniques is to produce a state ma-
chine using a model-inference algorithm, whose input is a collection of traces
recorded during the execution of the system. The algorithm generates a model,
often a finite automaton, that accurately represents the behavior of the system
that generated the trace log. The model is intended to adopt a formal language
derived from the input traces which is constrained by their temporal and struc-
tural properties. In this work, our main goal is to preserve the temporal and
structural features of the trace log and derive the exact behavior of the system’s
application logic for further verification of the system. To this end, we adapt
the model inference algorithm specified in [1] whose pseudo-code is shown in
Algorithm 1.

The algorithm starts by adding an initial state to the DFA object and one
state per unique interaction type in the trace log. Then, a transition from the
initial state to each first interaction of each trace is added.

Algorithm 1 Creation of a DFA from a trace log
1: procedure generateDFA
2: dfa ← add_state (init)
3: for trace ∈ traceLog do
4: for uniqueInteraction ∈ trace do
5: dfa ← add_state (uniqueInteraction)
6: for trace ∈ traceLog do
7: dfa ← add_initial_transition (trace[0])
8: for uniqueInteraction ∈ trace do
9: if new transition then

10: add_transition (transition)
11: dfaReduced ← reduce_dfa (dfa)

8 E. Korkan et al.

1·2·3
S0 S3

S10 S12

S6

10

11·12

4·5·6

7·8·9·10

Fig. 3: Minimized DFA state transition diagram resulting from the traces.

After the initial DFA is created from the input traces, it is possible to mini-
mize it according to one of the transition manipulation formulas defined in [21].
Applying this formula to a trace that conforms to the format in Listing 1.1,
we get the diagram of the reduced DFA in Fig. 3, in which we have four states
instead of twelve states if we were to not minimize it. The reduction of DFAs is
especially useful in the next steps of the transformation into Sequence Diagrams.

3.3 Transformation into Regular Expressions

In this work, we use Regular Expressions as a declarative way to express Mashup
application logic and to describe methods to obtain Sequence Diagrams from
such Regular Expressions. The patterns of strings described by Regular Expres-
sions show the same behavior as what can be described by finite automata, and
therefore any formal language defined by any finite automata is also defined by
a Regular Expression.

To construct a Regular Expression to define the language of any DFA we
need to build a sequence of patterns or expressions that define a set of strings
which in turn represent particular paths in the state transition diagram of the
DFA. We adopt the Transitive Closure Method from [20], which is a recursive
method that builds a collection of Regular Expressions that gradually describe
bigger groups of pathways in the DFA’s state transition diagram.

The main drawback of the Transitive Closure Method is that it tends to gen-
erate very long Regular Expressions compared to those generated by other meth-
ods. The simplification of DFA in the previous section was designed to reduce
the length of the final Regular Expression and the time needed to iterate and
reach the result (fewer states, fewer iterations). Nevertheless, the final Regular
Expression must be further minimized before proceeding with the transforma-
tion process. The simplification is done by iteratively transforming the Regular
Expression using a set of known algebraic equivalences in the Kleene algebra [11].
The final Regular Expression obtained using the Transitive Closure Method of
the DFA from the state diagram in Fig. 3 is the following:

REfinal = 1 · 2 · 3 (7 · 8 · 9 · 10 · 11 · 12 (10 · 11 · 12)∗ + 4 · 5 · 6) (1)

DyST WoT 9

3.4 Sequence Diagram Extraction

To derive Sequence Diagrams from the obtained DFA, we employed Regular
Expressions as an intermediate step. As outlined in [9], Sequence Diagram ap-
plication logic is described by elements defining specific behaviors like par, loop,
alternative, etc. These interactions can be composed using UML operators re-
sembling those in Regular Expressions. This mapping ensures equivalence be-
tween the Sequence Diagram, DFA, and input traces. The mapping from Regu-
lar Expressions to Sequence Diagram is defined as follows in [23], where i is an
interaction in the trace log:

1. (i1 · i2) = (i1 seq i2).
2. (i1 + i2) = (i1 alt i2).
3. (i)∗ = loop (i).

The Sequence Diagram can be therefore defined as:

REfinal =1 seq 2 seq 3 seq (7 seq 8 seq 9 seq 10 seq 11 seq 12

seq loop (10 seq 11 seq 12)alt 4 seq 5 seq 6)
(2)

The resulting expression with UML operators can in turn be transformed
into a UML Sequence Diagram by performing its tokenization and applying
the recursive executable procedure from Algorithm 2. Algorithm 2 converts a
Regular Expression into an intermediate description called Mashup Logic before
its conversion to Sequence Diagrams. In the context of this work, a Mashup
Logic is a tree-like structure consisting of each element of the application logic
represented in the Regular Expression. It describes the control flow of the system,
including nested elements and all the features of each message and each operator,
e.g. how often a loop is repeated.

The creation of the Mashup logic using Algorithm 2 is generalized in the
following way:

– The procedure generateMashupLogic starts by searching the tokens that are
included in the Regular Expression.

– If the algorithm sees a token, i.e. the operators seq, alt and loop, a new logic
element is added to the Mashup logic structure.

– If the new logic element has logic content, e.g. it contains nested elements
such as other operators, the procedure generateMashupLogic is called again
and the parsing process starts over.

Algorithm 2 Algorithm that implements a Mashup’s application logic.
1: procedure generateMashupLogic
2: for token ∈ regularExpression do
3: logicElement ← generate_logic_element(token)
4: if logicElement has logicContent then
5: generateMashupLogic(logicContent)

10 E. Korkan et al.

– The procedure finishes when the string to parse does not contain any logic
content and is only composed of sequential elements.

Finally, to obtain a UML Sequence Diagram, we use a specific subset of
PlantUML5 defined by the authors in [9]. The resulting Sequence Diagram is
omitted here for brevity reasons but can be seen in our repository6. As explained
in [9], it can be further processed to generate a SD or code for the controller.

3.5 Implementation

To facilitate evaluation and encourage reuse, we offer a publicly accessible im-
plementation of our method. While it’s built on Node.js and the reference imple-
mentation of the WoT Scripting API [10], the algorithms can be implemented in
other programming languages. Each step we’ve outlined previously can be used
as separate functions or together as an end-to-end solution.

4 Evaluation

To evaluate our contributions, we use a setup to showcase three case studies
with different characteristics to mine. All mashups considered in the evaluation
consist of physical or virtual Things that are exposed to the Web via an indus-
trial gateway and a Mashup controller that is hosted on a conventional laptop.
While this allows the right setup for an evaluation, a real-life setup would have
the mashup logic running in the cloud for non-real-time applications or in an
industrial PC or controller for real-time applications.

The scenario traces between them have been collected through the gateway,
as shown in Fig. 4. Every Mashup is composed of Things from one or several
WoT setups.

4.1 Evaluation Procedure

The evaluation aims to assess our method’s accuracy in identifying and repre-
senting Mashup behavioral components as Sequence Diagrams and to verify our
approach for system verification in the WoT. It’s divided into two sub-objectives:
approach evaluation and system verification evaluation.

Approach Evaluation In the first sub-objective, we evaluate the performance
of our approach. We focus on determining whether our method can correctly
and quickly mine the behavior exhibited in the scenario traces recorded during
normal system execution. The steps performed in each case study are:

– Manual design and creation of the Mashup application logic in SD format.
5 https://plantuml.com/
6 https://github.com/tum-esi/dyst-wot-miner/blob/main/paper-appendix/
method-result-seqd.pdf

DyST WoT 11

Exposed Thing 1

Exposed Thing 2

Exposed Thing 3

IP-level Interactions </>

Scenario

traces

Trace capture

Gateway

Proxy

TD database
Mashup

controller

Fig. 4: Common device setup. The Things of a Mashup are proxied via a gateway
that contains a trace capture to intercept and record messages exchanged between the
Things and the Mashup controller.

– Automatic creation of Mashup controller code.
– Recording and formatting scenario traces.
– Automatic conversion from scenario traces to Sequence Diagram (approach

from Chapter 3).
– Comparing the traces obtained with the mined Sequence Diagram to evaluate

if our method has correctly mined the behavior recorded in the traces.

System Verification Evaluation The second sub-objective is to prove the
effectiveness of our specification mining method for system verification. To do
this, we evaluate the relationship between the actual behavior of the system
and its designed specification to detect errors in the Mashup source code, design
problems, or malfunctioning devices. After performing the previous steps, we
proceed as follows:

– The previously obtained Sequence Diagram is further converted into SD.
– The designed SD is compared with the mined SD for system verification

purposes.

4.2 Case Studies

We assess our method through three case studies with varying properties and lev-
els of application logic complexity. The first, simpler case study involves inputs
from external users, providing a large set of trace logs for testing our method
across various correct and incorrect implementations. For the second and third
case studies, we design, implement, and deploy them due to their inherent com-
plexity. Though these cases yield fewer inputs, intentionally introduced bugs in
the controller code create variation, allowing us to test the effectiveness of our
method in mining faulty systems. More detailed descriptions and figures of each
case study are available in our repository, but we summarize them here:

1. This Mashup is composed of one receive interaction and one send interaction.
The controller reads the temperature of a Thing and then invokes an action
to show the measured temperature in the device’s display.

12 E. Korkan et al.

Case
Study

Number of
Devices

Number of recorded
interactions

Number of
Atomic Mashups

Number of
Alternatives

Number
of Loops

1 1 3 1 0 0
2 4 30 4 0 2
3 6 36 6 2 0

Table 1: Metrics characterizing the components of the different case studies.

Case
Study

Number of
Trace logs

Correctly
mined DFA

Correctly
mined SeqD

Correct
implementation

Faulty
implementation

1 19 19 8 8 11
2 4 4 4 1 3
3 4 4 4 1 3

Table 2: Metrics characterizing the evaluation results of the different case studies.

2. This system is characterized by two Things and by two loops. It starts with
reading a property and invoking an action of a movable camera. After each
loop, the property value is read again and displayed on the other Thing’s
display.

3. This system combines two sets of Things and aims to control the irrigation
of a farm. Depending on the state of the sprinklers (ON or OFF) and the
moisture of the soil, different actions are taken, including the subscription
to an event that is triggered when the soil is too dry.

4.3 Evaluation Results

Table 1 provides an overview of each case study’s characteristics, including the
number of behavioral components and complexity. We conducted our evaluation
using the setup and procedures detailed in previous sections, with results sum-
marized in Table 2. The column labeled Correctly mined DFA indicates trace
logs successfully processed, with their control application logic accurately mined
and represented as a DFA. Conversely, the column Correctly mined SeqD denotes
trace logs successfully transformed from DFA to Sequence Diagrams, evaluating
the first sub-objective described in Section 4.1.

The system in case study 3 presents a more complex control flow with a
total of eighteen unique interaction types and two alternatives, as summarized
in Table 2. We found that it is possible to mine simple to complex control flows,
including loops and alternatives, and to represent them with a Sequence Diagram
as shown by the previous examples and the results in Table 2.

On the other hand, the columns Correct behavior and Faulty behavior from
Table 2 evaluate the second sub-objective described in Section 4.1 and we classify
a result as follows:

DyST WoT 13

– Correct Implementation: Same application logic, affordances, and Things
involved.

– Faulty Implementation: Missing or extra messages, wrong order of mes-
sages, unnecessary loops, wrong Thing, wrong affordance, wrong branching.

– False Negative: Correct implementation that exhibits the issues of a neg-
ative result due to traces not reflecting the full range of possible behaviors.
Even though this case can be observed7, they are excluded in the tables
above since they cannot be considered to evaluate our method, but only the
lack of traces during capture.

All evaluation resources are accessible8 to the reader so that they can view,
understand, or reproduce our evaluation results.

4.4 Timing Evaluation

To conclude, we assessed9 our algorithms’ performance by measuring the time for
each transformation from scenario traces to Sequence Diagrams. We evaluated
four cases per study: one with correct implementation and three with faulty
implementation, showcasing various error types relevant for time analysis due
to their impact on performance. The faults found in case study 1 and the faults
we introduced in case studies 2 and 3 are explained below with their detailed
descriptions available in our repository.

1. Case Study 1: Faulty 1 with extra loop (x6), Faulty 2 with Extra loop (x4),
Faulty 3 with Extra loop (x2)

2. Case Study 2: Faulty 1 with Smaller loop count, Faulty 2 with No loop (x2),
Faulty 3 with Missing interactions (x3)

3. Case Study 3: Faulty 1 with No alt (Else), Faulty 2 with Extra loop (x2),
Faulty 3 with Wrong device

During our analysis, we observed an uneven distribution of time spent on each
transformation. Fig. 5b illustrates this behavior, comparing a simple system (case
study 1) with the most complex system analyzed (case study 3). Notably, the
creation of Regular Expressions consumed the majority of time across all case
studies, averaging 99.97%. This is attributed to the Transitive Closure Method
(Section 3.3), where complexity in creating Regular Expressions is proportional
to the number of states and control flow elements. Consequently, case studies 2
and 3 shown in Fig. 5b, being the most complex Mashups, exhibited extended
processing times, as detailed in Table 1.
7 An example can be found in our repository at https://github.com/tum-esi/
dyst-wot-miner/blob/main/paper-appendix/false-negative

8 Our repository contains the complete evaluation inputs, i.e. the communication
traces of the systems, the generated Sequence Diagrams, System Descriptions,
and the intervening output representations (DFA, Regular Expression and Mashup
Logic).

9 The hardware used for this evaluation is an Intel Core i7-6500U at 2.5GHz and 8GB
of RAM.

14 E. Korkan et al.

1.
C

2.
C

2.
F
1

2.
F
2

2.
F
3

3.
C

3.
F
1

3.
F
2

3.
F
3

0

100

200

300

se
co

nd
s

(a) Total time needed to complete the
mining procedure in each case study.

1.C 3.C

0

1

2

·105

7.29 10.820.52

1.66 · 105

2.44 3.44

m
ill

is
ec

on
ds

Traces-DFA DFA-Regex Regex-SeqD
(b) Times taken to complete each transformation
for case study 1 and 3 with correct behavior.

Case study 3 measurements seen in Fig. 5a show considerable differences for
different complexities that occur when there are extra or missing items in the
obtained traces:

– Case Study 3 Faulty 2 is the slowest mining procedure (289.29s) of this
analysis since it contains 3 loops, 2 branches, and 36 interactions.

– Case Study 3 Faulty 1 contains fewer control flow elements (no loops and
only 1 branch) which implies a reduction in the time needed by 75.53% (from
289.29s to 70.79s).

Overall, we can see that our method performs reasonably fast on an old
laptop. Trivial Mashups can be evaluated as they happen whereas more complex
ones need to be offloaded to another computer or to a cloud instance.

5 Conclusions and Future Work

In this work, we presented a novel method to mine specifications of WoT systems
by reverse engineering Sequence Diagrams from communication traces obtained
during the normal execution of the system, thus not requiring access to any
source code. Through our evaluation process, we have proven the ability of our
mining and conversion algorithms to quickly and accurately detect the applica-
tion control flow of a system to allow comparison with the reference description.
We envision our method to be used in real-life industrial applications that need
accountability, traceability, and observability.

While further work can generalize our algorithm by integrating additional
approaches based on neural networks, statistical methods and enhanced k-tail
algorithms such as [4, 15, 17], our contributions establish the groundwork for
further research in observability and dynamic specification mining for WoT to
enable system verification.

References

1. Beschastnikh, I., Brun, Y., Abrahamson, J., Ernst, M.D., Krishnamurthy, A.: Uni-
fying FSM-Inference Algorithms through Declarative Specification. In: Proc. of
35th ICSE. IEEE (2013)

DyST WoT 15

2. Briand, L.C., Labiche, Y., Leduc, J.: Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software. IEEE Transactions on Software
Engineering 32(9) (2006)

3. Cook, J.E., Wolf, A.L.: Automating Process Discovery through Event-Data Anal-
ysis. In: Proc. of 17th ICSE. IEEE (1995)

4. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-based
Data. ACM TOSEM 7(3) (1998)

5. Cook, S., Bock, C., Rivett, P., Rutt, T., Seidewitz, E., Selic, B., Tolbert, D.: Unified
Modeling Language Version 2.5.1. Tech. rep., Object Management Group (2017)

6. Grati, H., Sahraoui, H., Poulin, P.: Extracting Sequence Diagrams from Execution
Traces using Interactive Visualization. In: 17th Working Conference on Reverse
Engineering. IEEE (2010)

7. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Acm Sigact News 32(1) (2001)

8. Jiang, J., Koskinen, J., Ruokonen, A., Systa, T.: Constructing Usage Scenarios for
API Redocumentation. In: Proc. of 15th IEEE ICPC. IEEE (2007)

9. Kast, A., Korkan, E., Käbisch, S., Steinhorst, S.: Web of Things System Description
for Representation of Mashups. In: Proc. of COINS Conference. IEEE (2020)

10. Kis, Z., Aguzzi, C., Peintner, D., Hund, J., Nimura, K.: WoT Scripting API.
W3C note, W3C (2023), https://www.w3.org/TR/2023/NOTE-wot-scripting-api-
20231003/

11. Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata. Tech.
rep., RAND PROJECT AIR FORCE SANTA MONICA CA (1951)

12. Korkan, E., Kaebisch, S., Steinhorst, S.: Streamlining IoT System Development
With Open Standards. vol. 62. De Gruyter Oldenbourg (2020)

13. Koster, M., Korkan, E.: WoT Binding Templates. W3C note, W3C (Jan 2023),
https://www.w3.org/TR/2023/NOTE-wot-binding-templates-20230928/

14. Kumar, S.: Specification Mining in Concurrent and Distributed Systems. In: Proc.
of 33rd ICSE (2011)

15. Lo, D., Khoo, S.C.: QUARK: Empirical Assessment of Automaton-based Specifi-
cation Miners. In: 13th Working Conference on Reverse Engineering. IEEE (2006)

16. Lo, D., Khoo, S.C., Han, J., Liu, C.: Mining Software Specifications: Methodologies
and Applications. CRC Press (2011)

17. Lo, D., Mariani, L., Pezzè, M.: Automatic Steering of Behavioral Model Inference.
In: Proc. of the 7th ESEC/FSE (2009)

18. Matsukura, R., McCool, M., Toumura, K., Lagally, M.: Wot architecture 1.1.
W3C recommendation, W3C (Dec 2023), https://www.w3.org/TR/2023/REC-
wot-architecture11-20231205/

19. McCool, M., Korkan, E., Käbisch, S.: WoT Thing Description 1.1. W3C rec-
ommendation, W3C (Dec 2023), https://www.w3.org/TR/2023/REC-wot-thing-
description11-20231205/

20. Neumann, C.: Converting Deterministic Finite Automata to Regular Expressions
(2005)

21. Nikiforova, O., Gusarovs, K., Ressin, A.: An approach to generation of the uml
sequence diagram from the two-hemisphere model. ICSEA 2016 (2016)

22. Souder, T., Mancoridis, S., Salah, M.: Form: A Framework for Creating Views of
Program Executions. In: Proc. of IEEE ICSM. IEEE (2001)

23. Ziadi, T., Da Silva, M.A.A., Hillah, L.M., Ziane, M.: A Fully Dynamic Approach
to the Reverse Engineering of UML Sequence Diagrams. In: Proc. of 16th IEEE
ICECCS. IEEE (2011)

