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This paper introduces a novel multi-objective design optimization (MOO) framework for enhancing magnetically levitating (Maglev)
systems. By integrating finite element method (FEM) simulations and focusing on the dynamic interplay between mechanical, and
electromagnetic properties, as well as control system dynamics, our approach addresses the complex challenges of Maglev design,
such as variable inductance, force production due to air gap fluctuations, and magnetic saturation. The proposed framework
facilitates the development of more efficient, reliable, and adaptable Maglev technologies. Through a simulated implementation, we
demonstrate the framework’s effectiveness in optimizing electromagnet design for improved system integration and performance,
marking a significant advancement in electromechanical system optimization.

Index Terms—Multi-objective optimization (MOO), Electromagnetic Suspension (EMS), Design Optimization

I. INTRODUCTION

TRADITIONALLY, electromechanical system design and
optimization have relied on manual processes, using finite

element method (FEM) simulations, analytical models, and
equivalent circuit models to predict and optimize performance.
The current trend is moving towards automation, employ-
ing optimization techniques to streamline this process. Key
performance metrics derived from FEM simulations, such
as generated force relative to energy or minimizing weight
while maximizing performance [1], are optimized for specific
operational points, reflecting static performance expectations
typical of conventional applications like motors.

However, this approach has limitations when applied to
magnetically levitating (Maglev) systems based on ferromag-
netic materials. Traditional electrical machine design targets
the upper linear part of the iron’s saturation curve to balance
weight and remagnetization losses. In contrast, Maglev sys-
tems, especially Electromagnetic Suspension (EMS) systems,
operate in nonlinear regions where inductance and force pro-
duction vary significantly with air gap fluctuations, introducing
high nonlinearity challenges [2].

Designing Maglev systems to avoid saturation conditions is
impractical due to increased weight and energy consumption.
Thus, a sophisticated optimization approach that accounts
for the wide operational range and inherent nonlinearities is
essential. This approach must automate FEM simulations and
accommodate the complex interplay of performance metrics
within the system’s operational envelope.

While our focus is on EMS systems using ferromagnetic
materials, superconducting materials present different chal-
lenges, particularly in simulations involving both supercon-
ducting and ferromagnetic materials [3].
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Fig. 1: General sequence of the optimization process involving
FEM simulation, model building, levitation simulation, and
evaluation using a multi-objective optimization algorithm.

Existing methodologies fall short by failing to provide
a cohesive framework for the simultaneous optimization of
electromagnets and their control systems, thereby hindering
efficient and effective development of Maglev technologies.

Recognizing these challenges, our study explores an alter-
native approach. We propose a multi-objective design opti-
mization (MOO) framework that concurrently considers both
mechanical attributes and control system integration in the
early design stages of electromagnets. With the use of FEM
simulations, we derive the highly nonlinear inductance and
force values of the electromagnet that are crucial for under-
standing the behavior of Maglev control systems under varying
operational conditions. Based on those values, we derive a
plant model, and a model-based controller, that is used in sim-
ulation to determine the operational performance of a certain
mechanical configuration. Utilizing these performance metrics,
an MOO algorithm is employed to optimize the mechanical
structure of the magnet. This optimization sequence is depicted
in Fig. 1.

Our main contributions are the following:
• In IV, we present a comprehensive reference framework

employing a MOO algorithm for the design of electro-
magnets. An overview of this framework is depicted in
Fig. 2.

• In V, we provide a detailed explanation of the simulation
components that interact within the optimization process.

• In VI, we demonstrate the practical application of our
framework through a simulated implementation, show-
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casing its efficacy in optimizing electromagnet design for
improved integration with control systems.

II. RELATED WORKS

In this section, we discuss previous works relevant to our
contribution, focusing on A) EMS magnets and B) related
electrical machines.

A. Optimal Design of EMS Magnets
In [4] a general flow-chart for the design process of an

electromagnetic suspension magnet is outlined, covering sys-
tem configuration, control requirements, magnet dimensioning,
modeling, and evaluation of simulation results. Our approach
adheres to this workflow while emphaszising automation to
accelerate optimization.

In [5], Zhang et al. focus on optimizing the cross-sectional
dimensions of High-Temperature Superconductor (HTS) coils
to achieve desired magnetic levitation forces using FEM
analysis. Their aim is to optimize mechanical attributes of HTS
magnets for efficient levitation force generation.

Our framework, however employs a MOO methodology
that concurrently considers mechanical attributes and control
system integration from the early design stages. This holistic
approach reduces the iterative design process traditionally
seen in EMS system development, where control systems
compensate for electromagnet design limitations.

B. Multiobjective Optimal Design of Electrical Machines
The literature is rich of MOO of electrical machines [6].

Whilst most of those MOO approaches follow a similar
method of determining the performance directly from the
electro-mechanical simulations, our approach constructs the
performance through a combination of electro-mechanical
simulation and model-based control simulation. We further-
more want to highlight one specific approach to underscore
the differences.

For instance, the design optimization of interior permanent-
magnet machines (IPMs) has been explored using multi-
physics models that integrate electromagnetic, thermal, and
structural analyses within a MOO framework [7]. Similar to
our approach, the electro-mechanical properties are determined
at different operating points for each design iteration. How-
ever, our approach significantly diverges in constructing the
performance function to drive the optimization.

We derive the performance of the overall system by con-
structing a controller and plant model from the magnetic model
and simulating these to determine the performance of the
overall target system of the electromagnet during operation.
This holistic method ensures that the dynamic interplay of the
mechanical and electromagnetic properties, as well as control
system dynamics, is considered. By contrast, the approach in
[7] determines the overall performance by averaging of the
performance metrics at the individual operation points.

III. BACKGROUND

This section discusses the theoretical background of A)
Multi-objective optimization and B) electromagnet design in-
fluences.

A. Multi-objective Optimization

Multi-objective optimization is a mathematical and com-
putational approach used to find the best trade-offs when
optimizing multiple, often conflicting objectives simultane-
ously. This is particularly important in real-world scenarios
where improvements in one aspect can lead to compromises
in another, such as in engineering design, economics, and
environmental management.

In MOO, the goal is to identify Pareto-optimal solutions.
A solution is considered Pareto optimal if no objective can
be improved without worsening at least one other objective.
These solutions form the pareto front, representing the best
possible compromises between the conflicting objectives. For
example, in the design of an electric vehicle, one might need
to balance maximizing battery life against minimizing weight
and cost.

Genetic algorithms (GA) such as the NSGA-II algorithm
[6] and Surrogate-based MOO, such as Gaussian Process
Regression (GPR) are two prominent methods used to tackle
these kinds of problems. Both approaches have their unique
strengths and weaknesses, particularly in terms of the number
of samples required to model a problem and their ability to
model complex systems.

Genetic algorithms are a class of evolutionary algorithms
inspired by natural selection processes. They are particularly
well-suited for solving complex optimization problems with
large, non-linear search spaces where the mathematical model
is not straightforward. By constrast, surrogate based MOO re-
lies on fitting a surrogate function to the original model, which
the optimization algorithm then uses. A common approach
combines Bayesian Optimization with GPR as the surrogate
model. GPR includes probabilistic information, enabling the
system to be represented with a smaller sample size compared
to non-probabilistic models [8], making it suitable for expen-
sive models like FEM models.

Recently, a novel theoretical approach was introduced that
allows users to target Pareto points with specific properties
[9]. This approach, which inherits mathematical guarantees, is
particularly useful in scenarios where the black-box function
is expensive to evaluate and the user is primarily interested in
Pareto points that satisfy certain properties, such as prioritizing
specific objectives or meeting minimum constraints.

B. Electromagnet Design Influences on Control

Designing an electromagnet requires careful consideration
of multiple factors beyond just the weight of the assembly. Key
aspects are the coil’s electrical resistance determining energy
consumption, static and dynamic magnetic characteristics such
as the magnetic force at various currents and air gaps, which
affect the levitation system’s lifting capacity and suspension
stiffness.

Effective control systems must account for current behavior
determined by inductance, as current dynamics influence the
force required for stable levitation, particularly during dis-
turbances. This calls for a design where current and force
dynamics are responsive enough to handle such disturbances.
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Design conflicts arise because both force and inductance
depend on the structure’s geometry, winding characteristics,
and material saturation properties. Adding iron can increase
lifting force but also inductance, complicating control due
to slower current dynamics. Energy consumption is also a
concern, as it depends on lifting force, magnet weight, and coil
resistance. For instance, a thicker core can enhance control
and lifting force by delaying iron saturation but may shift
the operating point due to added weight. The interconnected
nature of these parameters underscores the need for a holistic
optimization approach.

Thus, electromagnet design requires balancing static and
dynamic aspects with control system requirements. For the
modeling process, FEM is commonly used to obtain detailed
system characteristics. Based on this, it is possible to derive
levitation simulations and control using system models such
as an electric circuit model [10].

IV. REFERENCE FRAMEWORK

This section presents our Reference Framework for the
MOO of electromagnets, as shown in Fig. 2. The framework
integrates an MOO Algorithm with FEM simulation and
Maglev simulations to yield Pareto-optimal design parameters
by influencing the mechanical attributes of the electromagnet.

The framework includes:
• An FEM simulation module to predict electromagnetic

characteristics.
• An electric circuit model, based on those characteristics

for developing a responsive and efficient EMS system
controller.

• A Maglev system simulation to understand the con-
troller’s interaction with the electromagnet in practical
settings.

• A performance evaluation module to generate a vector
of performance metrics, encompassing system efficiency,
reliability, and response characteristics.

The metrics feed back into the MOO algorithm for iterative
enhancements, converging towards optimal design parameters.
This systematic, data-driven approach ensures comprehensive
optimization of electromagnet designs in EMS systems.

V. HOMOPOLAR MAGNET MODELING AND CONTROL

A. Magnet Modeling

Typically, an EMS system consists of a coil wound around
an iron core, which, along with the limbs, forms a U-shape
with the opening facing towards the rail of the track. Apply-
ing current to the coil creates a magnetic flux through the
core, limbs, air gap, and rail, generating an attractive force
that counteracts gravity and enables levitation. We start with
parameters coming from the MOO algorithm defining the mag-
netic configuration. The parameters involve the thicknesses of
the core tc, limbs tl, and rail tr, as shown in the cross-section
in Fig. 2 a). Additionally, the number of windings in the coil
is defined by their arrangement side by side nside and stacked
nstacked. The arrangement of the windings, in turn, influences
the widths of the core and rail, while the total number of
windings sets the coil’s electrical resistance.

An electromagnetic FEM simulation in Ansys Maxwell
derives the configuration’s magnetic properties — force
Fmag(s, I) and inductance L(s, I). Both are influenced by
the electromagnet’s air gap s between limbs and rail and
the current I flowing through the coil. The magnetic force
typically increases initially quadratically with the current I .
The simulation incorporates magnetization curves for iron and
accurately maps saturation effects and resulting nonlinearities
in force and inductance, as depicted in Fig. 3. The results of the
FEM simulation have been validated with measurements from
our prototype design. Neglecting flux line displacement due
to eddy currents is justified, as laminating the rail, a standard
Maglev practice, minimizes this effect. Besides the character-
istics Fmag(s, I) and L(s, I), the chosen parameterization of
the coil windings also influences the electrical resistance Rel

that occurs in the subsequent modeling.
The electromagnet is modeled as an RL circuit, as described

in [10] and illustrated in Fig. 2 c). The dynamics of electric
current can be formulated by applying Kirchhoff’s second law

U(t) = RelI + Uind

= RelI +
d

dt

[
L(s, I)I

]
= RelI + L̃(s, I)İ +

∂L(s, I)

∂s
Iṡ,

(1)

where U is the applied voltage, Rel is the electric resistance,
and L̃(s, I) is used to abbreviate the expression ∂L(s,I)

∂I I +
L(s, I). In this case, L(s, I) represents the previously derived
inductance. Solving (1) for İ results in the differential equation
for the current

İ =
1

L̃

(
U −RelI +

∂L(s, I)

∂s
Iṡ

)
. (2)

The force output of the model Fmag(s, I) is obtained using the
current output from solving (2) under the common assumption
that current and magnetic force share the same dynamics.

B. Controller Design

Based on the system’s mechanical properties and the derived
magnetic model, an active levitation control system is being
designed. The controller consists of an Linear–quadratic regu-
lator for mechanics, influencing body dynamics. It receives
the desired air gap, actual air gap measurements, vertical
acceleration of the magnet, and current as input variables. The
control process accounts for the magnetic force nonlinearities
from the FEM model. The resulting reference current IRef is
realized through feedforward control (FFC), considering the
magnet’s inductance characteristic of the magnet to determine
the control voltage U .

VI. EVALUATION

A. Experimental Setup

The experimental setup features the integrated controller
as described in Section V-B within a Maglev vehicle model
simulation with solely the vertical degree of freedom. This
simulation, executed in SIMULINK, runs for 5 minutes to
cover the system’s complete operational range.
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Fig. 2: Reference framework for the optimization process with its individual components and their interaction.
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Fig. 3: Exemplary characteristics: normalized inductance
L(s, I) (left) and magnetic force Fmag(s, I) (right), both based
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a) Mechanical Vehicle Model: The magnetic model is
embedded in the mechanical vehicle model shown in Fig. 2d.
The electromagnet is suspended from the vehicle chassis via
a primary suspension, with the passenger cabin connected to
a secondary suspension.

b) Simulation Operational Setup: The simulation follows
an operational graph that mirrors real-world Maglev opera-
tions, as shown in Fig. 4.

Lift-off and landing phases: Highlight the system’s non-
linearity, particularly the saturation of iron components during
lift-off, impacting energy requirements, magnetic field dynam-
ics, and stable control.

Nominal operation and track irregularity simulations:
Maintains the target air gap, testing the controller’s effec-
tiveness in stable levitation and adaptability to real-world
challenges. Using real data from the Transrapid track in
Shanghai [11], a 1mm amplitude sine sweep simulates track
irregularities, assessing the controller’s capability to ensure
passenger comfort and system stability.

The overall goal of the system is to minimize the following
three performance metrics:

• Passenger Discomfort (P): Quantified by the integral
of the vertical acceleration a, weighted by the Sperling
weighting factor w [12].

• Controller Deviation (C): Average of the squared de-
viations from the target air gap gtarget (10mm), reflecting
controller precision and stability.

• Energy Consumption (E): Total power consumed by the
electromagnet during the experiment.

In total, this leads to the following optimization model:

min (P =

∫ (
F−1{F(a) · F(w)}

)
dt,

C =

√∫
(g(t)− gtarget)2 dt, E =

∫
U · I2 dt) (3)

s.t. nside ∈ {2, 3}, 120 ≤ nstacked ≤ 200, 20 ≤ tc, tl, tr ≤ 40.

B. Optimization Algorithm

Executing the FEM simulation along with the controller
and model generation, takes approximately 20 minutes per
simulation point, making the process highly expensive. This
is primarily because the FEM simulation must be performed
independently for each airgap s and current I , as shown in Fig.
3. Therefore, it is crucial to minimize the number of required
samples. To achieve this, we utilize a surrogate-based model as
described in Section III-A. Additionally, we are only interested
in specific points on the Pareto front rather than the entire
front, allowing us to use the Paref approach [9].

To initialize the surrogate model for the Paref framework,
we begin by sampling our system 50 times using Latin
hypercube sampling [6]. These initial samples help explore the
target space and fit the underlying surrogate model effectively.

C. Results

The results are illustrated in Fig. 5, where the three per-
formance metrics are compared pairwise in 2D plots. The
original evaluation, characterizing the magnet configuration
of our prototype design, is marked by a black star. The
initial evaluations are represented as small grey dots. The
MOO algorithm, designed to find Pareto points that showcase
balanced trade-offs between the three performance metrics,
successfully identifies configurations that significantly improve
performance metrics compared to the original evaluation.
These points are marked in blue in Fig. 5 and are compared
with the starting point on a percentage basis in Table I.

Notably, trade-offs between the performance metrics are
apparent. Configuration 1 shows a significant reduction in
controller deviation but performs poorly in passenger comfort.
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Fig. 5: Simulation results of electromagnet design comparing passenger discomfort, controller deviation, and energy consump-
tion. Lower values in each metric denote higher performance.

TABLE I: Percentage comparison of the evaluations to the
original point.

Evaluation P C E
1 367.02% -25.34% -40.75%
2 82.68% -18.81% -76.75%
3 -19.96% -9.14% -72.40%
4 -15.59% -7.57% -70.14%
5 -6.42% -10.77% -69.81%

Configuration 2 demonstrates the greatest improvement in
energy consumption among the presented configurations, yet
it does not reduce the controller deviation as effectively. In
contrast, Configurations 3-5 prioritize reducing passenger dis-
comfort, although their improvements in the other two metrics
are not as substantial as those observed in Configurations 1 and
2.

D. Discussion

Additional trade-offs are significant in meeting the prede-
fined design criteria of the levitation system. For example,
when the MOO algorithm prioritizes low energy consumption,
the resulting configurations are marked as red dots. Figures 5b
and 5c show these configurations have genuinely low energy
consumption. Fig. 5a reveals a trade-off between controller
deviation and passenger comfort, forming a Pareto edge.
Similar trade-offs can be identified when prioritizing other
performance metrics.

The results of the optimization can also be interpreted geo-
metrically. Within the pink ellipse, configurations with higher
energy consumption are visible. These points correspond to
settings with greater saturation of the narrowly parameterized
iron core during nominal operation, resulting in an unfavorable
force-to-power ratio. The weight savings from the reduced
core mass do not compensate for the lack of lift force. The
original evaluation exhibits the same issue.

The orange arrows indicate a trend towards configurations
with thicker iron core, which consume less energy (Fig. 5c)
but lead to greater control deviations (Fig. 5a) due to their
inertia.

VII. CONCLUSION

Our study presents a novel Multi-Objective Optimization
(MOO) framework, streamlining electromagnet design in Ma-
glev systems. This innovative approach significantly reduces

design time by integrating electromagnet and control sys-
tem optimization from the start, diverging from conventional
methods. While showing improvements in system performance
in simulated environments, the framework demands further
validation through real-world testing. Our method represents
a crucial step towards more efficient and rapidly developed
Maglev transportation systems.
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