
Portal: Time-Bound and Replay-Resistant
Zero-Knowledge Proofs for Single Sign-On

Jan Lauinger, Serhat Bezmez, Jens Ernstberger, Sebastian Steinhorst
Technical University of Munich

Munich, Germany
name.surname@tum.de

Abstract—Latest identity systems rely on public
blockchains to enhance user autonomy and reduce
tracking from conventional identity providers. At the same
time, identity systems integrate novel technologies such as
zero-knowledge proofs (ZKPs) to improve data privacy and
data compliance. We show that a naive verification of ZKPs
at smart contracts enables replay attacks: Attackers can
replay ZKPs at arbitrary times without having access to
the private inputs that are required for the computation of
the ZKP. To solve this problem, we construct a transaction
sequence which verifies time-bound and replay-resistant
ZKPs at smart contracts. Our construction introduces an
additional but constant fee of 0.14$ per verification of a
ZKP on the public blockchain Ethereum. With our new
construction, we propose Portal, a novel identity system for
decentralized single sign-on.

Index Terms—Zero-knowledge Proofs, Smart Contracts,
Decentralized Resolution, Single Sign-On

I. INTRODUCTION

Motivation: Almost every service of today’s web man-
ages users based on an identifiable session and requires
a mechanism to authenticate users beforehand. The user
authentication uniquely identifies every user of the system
and guarantees that the session is unique to one user. To
avoid each web service from implementing their own iden-
tity and authentication system, OpenID Connect (OIDC), as
the latest Single Sign-On (SSO) protocol, was standardized
in 2014 [1]. The SSO paradigm delegates user authentica-
tion at a web service towards a third-party Identity Provider
(IdP), which handles the unique identification of the user
(cf. case a in Figure 1).

Even though delegated authorization and authentication
via SSO is very convenient and cheap for users, IdPs can
track every log-in and data access of a user. To solve
the misaligned incentives between all parties, recent ap-
proaches (e.g. Sign-In with Ethereum (SIWE) [2]) replace
the IdP with a public blockchain and provide users with
new notions of autonomy [3]. Polygon ID [4] employs
Zero-knowledge Proof (ZKP) technology to enhance data
privacy and data compliance of users. Modern identity sys-
tems rely on certification ecosystems, where issuers verify
and attest to data claims made by users [4]. Similarly,
recent works [5] rely on assumptions (e.g. existence of
trustworthy issuers) which go beyond the requirements of
SSO systems. Because, in the trust establishment phase
of SSO systems, users agree to the IdPs’s terms and
conditions which require users to honestly create profiles
without requesting specific credentials [1].

979-8-3503-1674-2/24/ ©2024 IEEE

register

Login Credentials

Login via IdP

User

Redirect to IdP

Login prompt

Share token (OAuth), ID token (OpenID)

Reload Page
Access token

User data

Authenticat ID token

Data + session cookie

authenticate

deploydeploy

Registry Contract
On-chain

Off-chain

verify

resolve

a) Conventional SSO
b) Portal

Storage Network

Web Service

Identity Provider

Portal ID Service

Web Service

Identity Provider (IDP)

Identity Contract

Fig. 1. a) Overview of the Single Sign-On (SSO) delegated authentication
and authorization where the user agrees to a fixed policy (red box) of
the Identity Provider (IdP). Bold arrows indicate user-to-IdP interactions
which track user activities. b) Simplified view of the Portal identity
system, where users manage data and authenticate towards web services
with self custody.

Challenge: In this work and according to the require-
ments found in SSO systems, we investigate the honest
creation and management of user data, which does not
require any form of third-party attestation. In this scenario,
we entirely rely on the interaction between users and smart
contracts, where smart contracts verify the data claims
made by users. To create a claim on a data sample, users
convince smart contracts that the data sample complies
with a public statement. If the smart contract success-
fully verifies the claim, then the smart contract accepts
a mapping between a data claim and the address of the
user. If users create claims on private data, then the smart
contracts validate ZKPs asserting the claim. Based on
accepted claims, users can authenticate to any third party.

We find that replay attacks are a concern because
blockchain logs transparently expose transaction payloads
to adversaries. Thus, any claim can be replayed by re-
executing the same contract functionality using previously
exposed payloads.

Contribution: For claims on private data, we show that
replay attacks can be prevented. To do so, we introduce
a new transaction sequence which unequivocably binds
the proof computation to a specific user and time (cf.
Section IV-C). Instead of using a verifier-chosen nonce that
binds a proof presentation to a verification session [5], [6],
our transaction sequence relies on the blockchain Proof of
Stake (PoS) randomness as the verifier-chosen nonce. Our
transaction sequence achieves an efficient cost structure as
it does not require additional contracts that prevent replay
attacks (e.g. access control smart contracts [7]). Based on
this contribution, we propose a novel identity system, called
Portal, which supports on-chain and off-chain validations
of ZKPs on user data during user authentication (cf. bottom
part of Figure 1). In summary,

• Our new transaction sequence secures on-chain ZKP
verifications against replay attacks (cf. Section IV-C).

• We propose Portal, an alternative SSO solution with
enhanced privacy and control.

• We open-source1 our proof of concept of Portal and
evaluate operation costs (cf. Section VI).

In systems with strong know your customer (KYC) require-
ments, where users cannot be trusted to responsibly operate
claims, we want to highlight that Portal can and should be
used with third-party attestations.

II. PRELIMINARIES

A. Secure Hash Functions

A secure hash function implements an algorithm, where
• h.Hash(m) −→ (h) takes as input a message string and

outputs a constant size hash string h.
and guarantees three properties: Preimage-resistance en-
sures that given h, and attacker cannot find m if
h = h.Hash(m). Second preimage-resistance ensures
that given m1 an attacker cannot find m2 such that
h.Hash(m1)=h.Hash(m2) holds, with m1 ̸= m2.
Collision-resistance ensures that finding m1 ̸= m2 with
h.Hash(m1)=h.Hash(m2) is infeasible.

B. Public Key Cryptography (PKC) & Digital Signatures

PKC systems provide users with complementing key
pairs, a public key and a private key, where the private key
is never disclosed. Using PKC, we define a digital signature
scheme on a message string m with the algorithms, where

• pk.Setup(1λ) −→ (sk, pk) uses a security parameter
to output a PKC private key sk and public key pk.

• pk.Sign(sk, m) −→ (σ) takes as input the secret key
and a message string m, and outputs the signature σ.

• pk.Verify(pk, m, σ) −→ {0, 1} takes as input the pub-
lic key, the message message string, and a signature,
and outputs either a 1 if the signature verification
succeeds. Otherwise, the output is a 0.

C. Commitment Schemes

We define commitment schemes with algorithms, where
• cs.Commit(x) −→ (c, w) takes as input the data x,

generates a witness (e.g. randomness), and outputs a
commitment string c and the witness w.

1https://github.com/jplaui/portal

Merkle Tree commitment structure

Data commitments

Fig. 2. Binary Merkle Tree (MT) commitment structure on a set of data
items xi, with i ∈ {0, . . . , N}. The depicted MT has a depth D=2, leafs
l1, . . . , l2D , parents p1, p2∗2D−1−2, a root croot, and depends on the
hash function H . The root croot represents the commitment string and
the witness w consists of the internal witnesses wi, with i ∈ {0, . . . , N}
and a Merkle path fpath(xi) that depends on the committed data items.
In this figure, the witness comprises the set of tuples w=[(w1, [l22, p

2
2] =

fpath(x1))], where l22 indicates that l2 is the second concatenation when
computing p1.

• cs.Open(w, x, c) −→ {0, 1} uses the witness to verify
if the committed data matches the commitment string.
In case of a match, the algorithm outputs 1, and 0
otherwise.

Commitment schemes are hiding if the commitment string
c does not leak any information of x to an adversary
with access to c. Commitment schemes are binding if
there exists an unequivocal mapping between x, w, and c,
such that an adversary cannot find a second valid opening
yielding 1=cs.Open(w′, x′, c), with x′ ̸= x, w′ ̸= w. In
this work, we rely on Merkle Tree (MT) commitments [8],
[9] (cf. Figure 2).

D. Zero-knowledge Proof Systems

A general-purpose ZKP system allows a prover to con-
vince a verifier of knowing a secret witness w which
satisfies a statement expressed via a computation circuit
C. The verifier relies on an polynomial time algorithm to
verify if w is a valid proof of the statement and learns
nothing beyond the validity of the statement. A ZKP system
achieves the properties of (i) completeness, where an honest
prover with a valid witness convinces an honest verifier,
(ii) soundness, where a cheating prover without a valid
witness cannot convince an honest verifier, and (iii) zero-
knowledge, where a cheating verifier learns nothing beyond
the validity of a proven statement. We use a ZKP system
with the algorithms, where

• zk.Setup(1λ, ccsC) −→ (pk, vk) takes as input a
security parameter and a compiled constraint system
expressing a circuit C, and outputs the prover and
verifier keys pk, vk.

• zk.Prove(ccsC , w, pk) −→ π takes as input the com-
piled constraint system, a private witness, and the
prover key pk and outputs a proof π.

• zk.Verify(wpub, vk, π) −→ {0, 1} takes as input a
public witness wpub, the verifier key vk, and the proof
π and outputs a 1 if π combined with vk successfully
verify against wpub. Otherwise a 0 is returned.

If a ZKP system computes cs.Open (cf. Section II-C)
as C while taking the witness w as a private input, then a
commitment opening maintains input privacy. For example,
computing an MT inclusion proof against a commitment
croot requires the circuit C to derive croot’ based on the
secrets x1 and w, and check if croot’=croot (cf. Figure 2).

E. Blockchains & Smart Contracts

Public blockchains are open computer networks anyone
can join, which run a consensus protocol to agree upon a
common and correct state st at time t. The state maintains
two types of accounts; the externally owned account (EOA)
and the smart contract. An EOA is controlled by a PKC
key pair and is updated if a user owning the key pair sends
signed transactions to the blockchain. A smart contract is
an executable program at an unique address that can be
invoked by transactions. The execution of smart contracts
is measured in gas and must be paid by a medium called
cryptocurrency. Transactions are stored in a mempool until
a new state update is proposed via a new block of transac-
tions. Blockchain nodes verify new blocks by comparing
local state updates with the digests found in new blocks.
If the verification succeeds, transactions are locally applied
such that the network reaches a new global state.

Blockchains achieve the properties of safety which pro-
vides state integrity according to past states, liveness where
every transaction is eventually included in the state, and
consistency where every node eventually has the same view
of the state. Blockchain transactions are non-repudiable as
signatures of transactions unambiguously identifies users.

III. SYSTEM MODEL

A. Notations

Key pairsare the public and private keys of a PKC system.
Addressesare derived from a user’s public key and exist as
42-character hexadecimal strings appended with ’0x’.
WalletsW generate and maintain key pairs and, with that,
control the address Waddr corresponding to the key pairs.
Data items are key-value pairs, where the key string is a
descriptor of the value instance that expresses the data.
Statements ϕ=”key-op-comp” are strings that express
relations between a value comp and a data item with
key=key. Statements use at least one key, one operator
op (e.g. >,<,̸=, ?=,∈, etc.) and one comparison value comp
(e.g. threshold).
Claims exist as public claims claimpub={d, ϕ,t} and as
private claims claimpriv={d, ϕ, L, eid,t}. Public claims in-
clude the data item d, a statement ϕ, and a timestamp t. If
the data item of claimpub is stored externally, then d is set
to a location identifier d=L. Private claims include a data
item d, a statement ϕ, a location identifier L, an event
identifier eid, and a timestamp t. In claimpriv, the value
instance of d is a commitment string c (e.g. d[”age”] : c)
and the location identifier points to a circuit storage address
as L=LpΠ

.
Circuits are tuples pΠ={C, ϕ, ccsC , wpub, pk, vk, LC},
where the compiled constraint system ccsC expresses a
provable representation of a circuit C that implements
the assertions expressed by the statement ϕ. To assert
statements, the circuit C evaluates private inputs w to a
representation which can be compared against public inputs
wpub. The prover and verifier keys pk,vk are created by
running the setup algorithm zk.Setup of a proof system
Π. If the verification call of the circuit C is deployed as a
smart contract, then the locator LC is set to the address of
the circuit contract. Otherwise, LC=null.

Transactions are tuples tx={σ, dpl, taddr, gused} with a
signature σ from the transaction sender, a data payload
dpl, a gas value gused and a destination address taddr.
Transactions are used to invoke and pay for smart contract
calls at an address taddr and provide non-repudiation of the
transaction sender.
Circuit contractsCC verify ZKPs on-chain and emit events
eid according to the outcome of a ZKP verification. Circuit
contracts expose the sample and verify methods. If a
transaction calls the sample method, then CC associates
a PoS randomness as a nonce with the wallet address of
the user in a map m[Waddr]nonce. The randomness is used
during the verify method which verifies a ZKP.

B. System Roles

Users hold wallets, deploy identity contracts, and register
the address of the identity contract at the registry contract
after passing an authenticity verification at the identity
service. Users individually manage claims and attestations,
and authenticate themselves at third-party services by link-
ing or presenting data. Users count as issuers in the context
of signing and sharing credentials towards other users.
Identity services deploy and maintain registry and circuit
contracts and connect users to the Portal identity system.
We envision non-profit organizations to take the role of
the identity service and assume that identity services have
the expertise to create secure ZKP circuits which evaluate
claims of users.
Third-party services (e.g. web services) authenticate users
based on the Portal identity system and trust issuers.
Blockchain networks provide decentralized and verifiable
computation and storage through smart contracts and man-
age registry, identity, and circuit contracts.
Storage networks provide decentralized, fault-tolerant, and
high-availability storage of data at locations L and are used
to store larger data objects such as circuit parameters pΠ.

C. Threat Model

We assume that transactions sent to blockchain nodes
are secured via Transport Layer Security (TLS) such that
the TLS properties of message confidentiality, integrity,
and authenticity hold. We assume that (i) honest users
are able to resolve the correct state st of the blockchain
at time t, that (ii) collision resistant hash functions are
used in the blockchain PoS protocol to determine the
block randomness [10], and (iii) active, adaptive, and
probabilistic polynomial time (PPT) adversaries that are
able to perform machine-in-the-middle (MITM) attacks and
intercept communication traffic. Adversaries are not able
to block traffic indefinitely and cannot modify intercepted
traffic. Adversaries have access the mempool, can access
transaction payloads by observing blockchain logs, and
replay transactions tx or ZKPs of a user.

IV. CONSTRUCTING TIME-BOUND AND
REPLAY-RESISTANT ZKPS

A. ZKP Verification at Smart Contracts

As the initial setup, we assume access to a circuit tuple
pΠ, which has been instantiated by a trusted party p0. The
party p0 derives the solidity verification code of C1 ∈ pΠ

assertClaim(d, pMT, Waddr, n; rootMT, Waddr, n, ϕ):

1. assert: n ?
= n; Waddr

?
= Waddr; 1 ?

= fϕ(d)

2. return: 1 ?
= cs.Open(pMT, d, rootMT)

Fig. 3. ZKP circuit to verify a data item d of a private claim against a
MT commitment rootMT. The MT has a depth of 5 and a path pMT as the
private witness. The circuit has 9.29K constraints and evaluates d against
ϕ=”d[age]->-18” using the function fϕ. The semicolon ; separates private
inputs (left of ;) from boldly formatted public inputs (right of ;).

for the creation and deployment of a circuit contract CC1

(cf. steps 1.4, 1.5 of Figure 4). Π uses a ZKP system
which compiles the circuit C1. The circuit C1 performs
an address and nonce check, asserts a private data item
against a statement ϕ, and checks if the data item computes
to a public commitment string (cf. assertClaim logic of
Figure 3). Now, a user as party p1 is able to compile
transactions with a payload that contains the bytes of a
ZKP π, and call the deployed contract CC1 for an on-chain
verification of π.

B. Binding ZKP Computations to the PoS Randomness

In the following we define a transaction sequence where
a user p1 compiles the transaction tx1 to call the sample
method of the contract CC1 . Upon receiving tx1, CC1

associates the latest PoS randomness r with the user’s
wallet address by depositing both parameters into the
map m[Waddr]nonce. Initially the randomness is con-
catenated with a state string to represent the nonce as
nonce=st.prevrandao||”-0”. After CC1 samples the nonce,
users fetch and use the deposited nonce to compute a ZKP
π using the circuit C1. To prevent replay attacks and ensure
time-bound proofs (cf. Section IV-C), the ZKP circuit C1
takes in and compares both the user’s wallet address and
the nonce as private inputs and public inputs. Notice that
binding values (e.g. the nonce) to a ZKP computation via
public inputs is secure [6]. In a transaction tx2, p1 calls the
verify method of CC1 , which upon a successful verification
of π, sets the nonce to m[Waddr]st.prevrandao||”-1” and
emits an event with an identifier eid. If party p1 presents
eid towards any third-party service, then the third-party
service can use eid to resolve and verify a successful on-
chain ZKP verification via smart contract logs (cf. steps
2.1-2.8 in Figure 4).

C. Security Analysis

Theorem 1. If a party p1 with access to

• a smart contract CC1

• a secure proof system Ππ

• a secure signature scheme Πσ

• a secure hash function ΠH

performs the sequence of computations

1) p1 compiles and signs a transaction tx1 with Πσ .Sign
2) p1 calls CC1 .sample with tx1 such that CC1 generates

the prevrandao randomness r using ΠH .Hash and
stores m[W p1

addr]r||”-0” at timestamp t1
3) p1 fetches r from m[W p1

addr]
4) p1 computes π=Ππ .Prove(ccsC1

,w,pk)

5) p1 compiles and signs a transaction tx2 with Πσ .Sign,
where π ∈ tx2.dpl

6) p1 calls CC1 .verify with tx2 and CC1 sets
m[W p1

addr]r||”-1” at timestamp t2 > t1

under the assumptions that
• CC1 runs on a blockchain which guarantees liveness,

consistency, safety
we say that the proof π is resistant against replay attacks
performed by a malicious PPT adversary such that π ∈ tx2’
is never accepted by CC1 . And, we say that computing π is
bound by the time t1 and cannot be accepted after t2.

Proof 1. At time t1, the adversary A cannot change tx1

of p1 as unforgeability of transaction signatures holds. But,
A is capable of registering the same nonce of p1 twice at
CC1 with tx1’. CC1 maps the nonce of A at the address
m[WA

addr]. At time t > t1, A uses the blockchain logs to
access tx2 of p1 and, with that, π. If A replays π in a
transaction tx2’ and calls CC1 .verify, then the verification
of circuit C1 fails because of the following issue. The proof
π has been computed with the address m[Waddr] as private
input and CC1 asserts that π is verified against the owner
of tx2. A has signed tx2’ such that CC1 asserts π with the
public input WA

addr taken from tx2’, which fails.
Further, A tries to replay a previously accepted proof

πA (sampled and proven with txA
1 and txA

2). At time
t > t1, t2, A cannot replay πA because, even though a
reoccurring nonce is negligible (collision resistance of PoS
randomness), CC1 prevents overwriting an existing map
entry at m[WA

addr] if a nonce has already been set. Thus,
our scheme is replay-resistant and time-bound as π can
only be computed at t2 after randomness has been sampled
with tx1 at time t1 < t2.

V. Portal IDENTITY SYSTEM

A. System Goals

Sybil resistance prevents an adversary to register an arbi-
trary amount of pseudonymous identities.
Decentralized resolution guarantees that the storage and
computation of user data remain publicly verifiable, trust-
less, and available towards a resolving third-party service.
On-chain & off-chain verification of private data allows
users to (i) present data to a third-party service, where the
data has been verified at smart contracts or (ii) interactively
convince a third-party service of a data verification.
Cost-efficiency optimizes operation costs for third-party
and identity services and enables scalability of Portal with
cheap maintenance costs for the identity service.

B. Architecture

Portal requires two new contracts, where
Registry contractsCreg maintain the map m[Waddr]C

id
addr

linking registered wallet addresses and addresses of iden-
tity contracts. Creg exposes a register method which
requires the transaction payload to include an identity
service signature on a new identity contract address. Fur-
ther, for the identification of circuits, Creg maintains a
map m[nameC]LpΠ

which associates location identifiers of
circuit parameters LpΠ with circuit names nameC .

1.2 deploy

User

1.1 deploy

Portal Identity ServiceRegistry Contract

Identity Contract

Storage NetworkCircuit Contract

1.3 register

Third-party Service

1.4 init circuit

3.4 off-chain verify

Fig. 4. Portal architecture in the context of managing a private claim.
The system deployment, user registration, and the circuit pre-processing
is indicated with dashed arrows (1.1-1.6). The on-chain verification of
private claims at time t1, and private claim presentation towards a third-
party service is depicted with solid lines (2.1-2.8). The live verification
at time t > t1 of a private claim is indicated with dotted lines (3.1-3.4).

Identity contracts Cid maintain claims, attestations, and
revocations with the maps m[nameclaim]claim, m[nameatt]a,
and m[aid]rev, where aid is an attestation identifier. The
unique strings nameclaim, nameatt represent claim and attes-
tation names.

The registration of a new user in the Portal system
depends on two transactions. The first transaction deploys
the identity contract Cid of the user. In the same way as
the registry contract, the constructor of the identity contract
sets the deploying party as the owner of the contract. Only
the owner of Cid is able to call methods which modify
the state of Cid. The compilation of the second transaction
requires the user to obtain a signature σCid

addr
from the

identity service on the identity contract address. Before
signing any Cid

addr, the identity service verifies and dedu-
plicates users, such that sybil resistance holds in the Portal
system. Users use the second transaction to invoke the
register method at the registry contract Creg , which checks
the signature validity of σCid

addr
before including the user’s

wallet address and Cid
addr into the map m[Waddr]C

id
addr. If

the user shares the wallet address Waddr with any third-
party service, then the third-party service is able to resolve
Cid

addr via the map m[Waddr]C
id
addr such that decentralized

resolution holds.
Once users are registered, users can create private claims

by following the transaction sequence which prevents re-
play attacks (cf. Section IV). Further, users can decide to
partake in a live verification of private data, where a proof
system is deployed between the user and the third-party
service (cf. steps 3.1-3.4 in Figure 4). The live verification

ensures that private claims are not validated by smart
contracts at timestamps in the past. The data verification
modes of Portal ensure support for on-chain and off-chain
verification of private data.

Third-party services resolve and verify user data through
a Portal plugin, which performs a signature challenge
before every data verification. Similar to the SIWE sign-in
challenge [2], our signature challenge demands the user to
compute a signature on a randomly sampled nonce using
the wallet key pair, where our plugin samples the nonce.

Notice: Replaying publicly accessible data cannot be
prevented which is why this work solves replay attacks of
claims made on private data. However, if an adversary oper-
ates claims on public data and cheats (upload false claim),
then the blockchain properties guarantee that adversaries
remain accountable once misbehaviour is detected. In this
case, the reputation of a user declines.

VI. EVALUATION

A. Implementation

The Portal proof of concept was conducted locally
using the Ganache2 test network (v7.8.0) as the public
blockchain. We rely on the solidity compiler solc v0.8.20
as the PoS block randomness prevrandao is available in
all versions above v0.8.18. We develop a Portal Golang
System Development Kit (SDK) to deploy and maintain
Portal at every party and use the official Ethereum repos-
itory go-ethereum3 including abigen v1.10.16 to interact
with smart contracts. We convert transaction costs into US
dollars based on the rate 2084.42$ per 1 eth (November
2023) and select the default Ganache gas price gasprice =
2gwei. We select the Golang gnark (v0.9.1) repository [11]
as the ZKP system and configured (i) the plonk backend
with a universal setup to verify ZKPs on-chain. To prove
and store private claims efficiently, we benchmark the ZKP
circuit C1 (cf. Figure 3), which evaluates data items of
claimspriv as private input against a MT commitment as
the public input. We use the MiMC hash function [12] to
compress the MT data. We open-source the Portal code
with the smart contracts and simulation scenarios in the
repository4.

B. Costs Analysis

The evaluation uses a MacBook Pro with the Apple
M1 Pro chip and 32 GB of Random Access Memory
(RAM). The benchmarks average ten executions of the
same experiment.

Table I shows the Portal cost analysis, where transaction
costs are computed according to txcost=gasused · gasprice.
We explain the execution times in the range of millisec-
onds with the local deployment of Portal. By deploy-
ing Portal on the Sepolia5 testnet, we measured trans-
action resolution times taking around 150ms and trans-
action calls taking between 1.3s (CC1 deploy) and 9.4s
(sample+verify π+claimpriv). We explain higher execution
times of the transactions that deploy C1 and verify a proof

2https://github.com/trufflesuite/ganache
3https://github.com/ethereum/go-ethereum
4https://github.com/jplaui/portal
5https://www.alchemy.com/overviews/sepolia-testnet

TABLE I
Portal BENCHMARKS WITH THE ABBREVIATION BYTE CODE (BC)

Tx / Call Type Cost (eth/$) Time (ms) Size (kB)

Creg deploy 4.1e-3/8.6 18 bc:6.5,tx:6.6
Cid deploy 6.5e-3/13.5 10 bc:10,tx:10
CC1 deploy 4.9e-3/10.2 385 bc:7.4,tx:12
set C1 Creg 8.4e-5/0.18 11 tx: 0.46
register Creg 7.4e-5/0.16 51 tx: 0.3
claimpub Cid 6.4e-05/0.13 3 tx: 0.48
sample CC1 6.6e-05/0.14 6 tx: 0.1
verify π CC1 8.4e-4/1.76 252 tx: 1.20
claimpriv Cid 3.9e-4/0.82 21 tx: 0.68
setupC1

plonk off-chain - 1029 pΠ: 7430

proveC1
plonk off-chain - 195 π: 0.552

set/getpΠIPFS off-chain - 631 / 66 7430
getW /n/C1 off-chain - 10/6.2/4.8 42/78/130

of C1 with the corresponding higher transaction sizes.
Compared to other contracts, which initialize empty maps,
the byte code of CC1 stores large cryptographic parameters
which increase the transaction size of CC1 . Except transac-
tions of the type deployment and the transaction to verify
a ZKP on-chain, the cost per transaction remains below
1$. Thus, as claims are verified once and shown multiple
times, we consider Portal as cost-efficient.

VII. DISCUSSION

A. Related Works

The work DecentID [13] introduces a smart contract
identity system which resolves user data via four different
contract types. In contrast to DecentID, Portal supports
enhanced data privacy through on-chain and off-chain ZKP
computations.

The work zk-creds [5] proposes the first construction
of anonymous zero-knowledge Succinct Non-Interactive
Arguments of Knowledge (zkSNARK) credentials. With a
verifier-chosen nonce, zk-creds prevents credential replays
towards the verifier in the off-chain context. By contrast,
Portal works on chain and applies the PoS randomness to
prove zkSNARK claims in unique verification sessions.

The work Zebra [7] introduces a zkSNARK credential
scheme with an on-chain ZKP verification at an access
control contract. Before a user authenticates at an applica-
tion smart contract with a wallet address Waddr, the user
posts a ZKP to the access control contract to provide access
privileges to Waddr. Instead of relying on additional smart
contracts, Portal improves the cost-efficiency by solving
ZKP replay attacks via a cheap transaction sequence.

The work zkLogin [14] constructs a modified OIDC
nonce to authenticate transactions in the on-chain context
via existing OIDC credentials. Portal tries to minimize the
reliance on third-party entities (e.g. OIDC providers) and
does not answer the question whether session management
is handled by an extra provider or the third-party service.

B. Limitations & Future Work

Portal runs on the native blockchain network called
layer 1 (L1). To optimize transaction costs, we envi-
sion deploying Portal via scalable layer 2 (L2) networks
(e.g. zk-rollups [15]). We expect that our proof-of-concept

TABLE II
COMPARISON WITH RELATED WORKS.

Paper Dec. Resolution On/Off-chain Verify Extra Contract

DecID /
zk-creds /
Zebra /
zkLogin /
Portal /

implementation requires minor adjustments to reach L2
compatibility as existing tooling for L2 deployments exist.
With a L2 deployment, Portal must be compared towards
related works with regard to cost and efficiency. Another
item of future work is the security assessment under relaxed
assumptions of blockchain properties and the consideration
of censorship implications. Concerning decentralizing the
identity service, we either (i) register users based on a
multi-party signature issued by multiple identity services,
or (ii) maintain a list of public keys in the registry contract,
such that public keys authorize identity services. We like to
highlight that Portal is compatible with data provenance so-
lutions if users interact with attesting oracle services [16],
[17]. To align Portal with standardization efforts, we see
OIDC, W3C Decentralized Identity (DID) and Verifiable
Credential (VC) as appealing compliance goals.

VIII. CONCLUSION

In this work, we construct a time-bound and replay-
resistant ZKP verification at smart contracts. On top our
construction, we present Portal, a modern identity system
with enhanced privacy and control. Portal is designed to
satisfy regulatory privacy requirements and provides third-
party services with a plugin to resolve and verify private
or public data claims of users. As such, Portal serves as
the first SSO alternative with conventional usability that
gives users a choice to pick enhanced control and privacy
at small costs.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the
Federal Ministry of Education and Research of Germany
in the programme of “Souverän. Digital. Vernetzt.”. Joint
project 6G-life, project identification number: 16KISK002.

REFERENCES

[1] C. Mainka, V. Mladenov, J. Schwenk, and T. Wich, “Sok: single
sign-on security—an evaluation of openid connect,” in 2017 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE,
2017, pp. 251–266.

[2] W. Chang, G. Rocco, B. Millegan, N. Johnson, and O. Terbu,
“Erc-4361: Sign-in with ethereum [draft],” https://eips.ethereum.org/
EIPS/eip-4361, October 2021, [Online serial] Accessed: 2023-11-
15.

[3] J. Ernstberger, J. Lauinger, F. Elsheimy, L. Zhou, S. Steinhorst,
R. Canetti, A. Miller, A. Gervais, and D. Song, “Sok: Data
sovereignty,” Cryptology ePrint Archive, 2023.

[4] P. Labs, “Polygonid: A blockchain-native identity system,” https:
//polygonid.com/, accessed: 2023-03-04.

[5] M. Rosenberg, J. White, C. Garman, and I. Miers, “zk-creds:
Flexible anonymous credentials from zksnarks and existing identity
infrastructure,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023, pp. 790–808.

[6] K. Baghery, M. Kohlweiss, J. Siim, and M. Volkhov, “Another look
at extraction and randomization of groth’s zk-snark,” in Financial
Cryptography and Data Security: 25th International Conference,
FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers,
Part I 25. Springer, 2021, pp. 457–475.

[7] D. Rathee, G. V. Policharla, T. Xie, R. Cottone, and D. Song,
“Zebra: Anonymous credentials with practical on-chain verification
and applications to kyc in defi,” Cryptology ePrint Archive, 2022.

[8] R. Dahlberg, T. Pulls, and R. Peeters, “Efficient sparse merkle trees:
Caching strategies and secure (non-) membership proofs,” in Secure
IT Systems: 21st Nordic Conference, NordSec 2016, Oulu, Finland,
November 2-4, 2016. Proceedings 21. Springer, 2016, pp. 199–215.

[9] H. Ritzdorf, K. Wüst, A. Gervais, G. Felley, and S. Capkun, “Tls-
n: Non-repudiation over tls enabling-ubiquitous content signing for
disintermediation,” Cryptology ePrint Archive, 2017.

[10] B. Edgington, “Upgrading ethereum: 2.9.2 randomness.” https://
eth2book.info/capella/part2/building blocks/randomness/, 2023.

[11] G. Botrel, T. Piellard, Y. E. Housni, I. Kubjas, and A. Tabaie,
“Consensys/gnark: v0.9.0,” Feb. 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.5819104

[12] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen,
“Mimc: Efficient encryption and cryptographic hashing with mini-
mal multiplicative complexity,” in International Conference on the
Theory and Application of Cryptology and Information Security.
Springer, 2016, pp. 191–219.

[13] S. Friebe, I. Sobik, and M. Zitterbart, “Decentid: Decentralized and
privacy-preserving identity storage system using smart contracts,” in
2018 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications. IEEE, 2018, pp. 37–
42.

[14] F. Baldimtsi, K. K. Chalkias, Y. Ji, J. Lindstrøm, D. Maram, B. Riva,
A. Roy, M. Sedaghat, and J. Wang, “zklogin: Privacy-preserving
blockchain authentication with existing credentials,” arXiv preprint
arXiv:2401.11735, 2024.

[15] S. Motepalli, L. Freitas, and B. Livshits, “Sok: Decentralized
sequencers for rollups,” arXiv preprint arXiv:2310.03616, 2023.

[16] J. Ernstberger, J. Lauinger, Y. Wu, A. Gervais, and S. Steinhorst,
“Origo: Proving provenance of sensitive data with constant commu-
nication,” Cryptology ePrint Archive, 2024.

[17] J. Lauinger, J. Ernstberger, A. Finkenzeller, and S. Steinhorst,
“Janus: Fast privacy-preserving data provenance for tls 1.3,” Cryp-
tology ePrint Archive, 2023.

