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Abstract—The dynamic reconfiguration of vehicular control
and management systems to adapt to different scenarios, partic-
ularly those with conflicting design goals, remains a challenging
task. In this context, we propose a reference architecture and
a generic process to integrate advanced gain scheduling with
a feedback loop that continually updates configuration lookup
tables to generate scenario-related configurations at runtime. For
demonstration purposes, our approach is applied to a Hyperloop
vehicle’s magnetic suspension system to guarantee simultaneously
optimized accuracy of control, energy consumption and passenger
comfort for a multitude of scenarios. Additionally, the feed-
back mechanism increases resilience against mechanical failures,
marking an advancement in vehicular system adaptability and
reliability.

Index Terms—Autonomous Systems, Vehicular Systems, Multi-
Objective Optimization, Real-time, Hyperloop

I. INTRODUCTION

Dynamic configuration of vehicular systems within their
multitude of relevant scenarios under multi-objective require-
ments represents a highly challenging system design goal.
While multi objective optimization (MOO) is not a new
application in vehicular system development per se [1] [2], it is
important to note that its implementation (e.g. by evolutionary
algorithms [3] or gaussian process based MOO [4] based
methods) is typically not real-time capable [5]. However, the
dynamic and unpredictable nature of real-world settings often
exposes the limitations of traditional models that are not able
to autonomously reconfigure during runtime.

In the field of vehicular systems, where the synergy of
computational and physical processes is of central importance,
the ability to respond to unexpected changes is central not
only to maintaining efficiency, but also to ensuring safety.
This is where the principle of autonomy is elevated from a
mere capability to an essential system characteristic. In this
context, autonomy outreaches conventional adaptive control. It
involves a system’s ability to self-manage and optimize various
aspects, such as control parameters, software configurations,
and hardware states, all without human intervention.

Against this background, we propose a novel reference
framework for autonomous vehicular systems enabling real-
time adaptive multi-objective-optimal system reconfigurations.
This framework incorporates Configuration Scheduling, which
is adapted from gain scheduling, a nonlinear control method-
ology. In contrast to gain scheduling, that adjusts control
parameters (’gains’) according to an operation graph, Con-
figuration Scheduling dynamically adjusts control parameters
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Fig. 1: Overview of reference architecture components.

based on predefined multi-dimensional scenarios, allowing us
to pre-emptively provide a set of optimized configurations
for various operating conditions. To obtain the multi-objective
optimal configurations for the specific scenarios, we employ an
optimization algorithm. This algorithm focuses on minimizing
the cost of each configuration, utilizing a digital twin at its
foundation. Additionally, we’ve incorporated a feedback loop
into our framework. This loop is specifically designed to
adaptively manage unexpected scenarios, like material wear
and tear or alterations in interconnected systems. By contin-
ually updating the digital twin, our system can reconfigure
and adjust strategies based on a holistic understanding of
the operational environment. Our Configuration Scheduling
approach directly addresses the need for rapid adaptation in
dynamic environments, a cornerstone of autonomy in vehicular
systems. Similarly, the feedback loop responds to slower,
less predictable changes, embodying the autonomous system’s
ability to self-optimize and ensure long-term reliability. The
reference frameworks also contains an architecture, describing
the required components to perform Configuration Scheduling
which is depicted in Figure 1.

We further demonstrate our framework’s efficacy using the
Hyperloop magnetic suspension system. This system demands
fast adaptation at high-speed conditions, making Strategy
Scheduling an ideal approach. Additionally, our feedback loop
is designed to detect and respond to slower changes, such as
track aging or mechanical deterioration, ensuring long-term
system reliability and safety.



In summary, our contribution is threefold:
• We propose Strategy-scheduling, an approach adapted

from nonlinear control theory that allows for Autonomous
Pareto-optimal reconfiguration of a vehicular system.
(Section IV-A)

• We propose a reference architecture that defines the
entities required to operate Configuration Scheduling.
(Section IV-B)

• We evaluate and demonstrate the architecture in a real-
world scenario by applying it on a Hyperloop magnetic
levitation system to show that the system performs better
in all our performance metrics various scenarios when
compared to the initial linear quadratic regulator (LQR)
methodology (Section V).

II. BACKGROUND

A. MAPE-K

The concept of autonomous computing has been a subject
of interest since the introduction of the MAPE-K framework
by an IBM study over two decades ago [6]. Despite its age,
MAPE-K continues to be a significant concept to achieve self-
adaptation [7] . Its core principle involves utilizing a feedback
loop comprising four stages: Measure (M), Analyze (A), Plan
(P), and Execute (E), underpinned by Knowledge (K), to
facilitate system autonomy. While MAPE-K does not provide
detailed methodologies for each stage, it offers a foundational
framework for developing an autonomous strategy.

B. Multi-Objective Optimization

Multi-objective optimization (MOO) is a mathematical and
computational approach used to find the best trade-offs when
there are multiple, possibly conflicting objectives or criteria
that need to be optimized simultaneously. These scenarios,
where no single solution optimally satisfies all objectives,
are prevalent in various domains such as power systems [4]
and automated manufacturing systems [8]. Mathematically, the
goal of MOO is to identify (Pareto-)optimal trade-offs between
the various objectives.

Definition (Pareto point). A t ∈ T ⊂ Rn is called Pareto
optimal (or Pareto point) if there exists no s ∈ T such that
si ≤ ti for all i = 1, ..., n and sj < tj for some j.

An x ∈ D ⊂ Rm is a Pareto point of f : D → T if
f(x) ∈ {f(t) : t ∈ D} is a Pareto point.

In other words, a point is Pareto optimal if an improvement
in one component always results in a deterioration of some
other component. Thus, Pareto optimal solutions represent the
best possible compromises between the conflicting objectives.
MOO employs algorithms such as genetic algorithms [3] and
Gaussian process based MOO [4].

Typically, such algorithms iteratively evaluate an underlying
(simulation) model. Given that most vehicular simulation
models are computationally intensive, this makes real-time
applicability of MOO methods a challenging task.

C. Gain Scheduling

As previously highlighted, current multi-objective optimiza-
tion algorithms face inherent speed limitations due to their

reliance on constructing models from simulation data or real-
world inputs. This process, which involves sampling and
model construction, inherently ties the system’s reponsiveness
to the execution times of these models. This is particulary chal-
lenging in vehicular systems where multiple, often conflicting
design goals depend heavily on the system’s configuration
state. In nonlinear control theory, similar challenges arises
when dealing with systems that operate across multiple points.
For instance, the startup phase of a motor presents a scenario
where friction dynamics are highly nonlinear until a certain
threshold is reached. To manage this complexity, control theo-
rists have developed gain-scheduling. This approach involves
a look-up table (LUT) that stores the control parameters at
various predefined operation points. This is done by sampling
the nonlinear operation curve at regular intervals, linearizing
the system at each point and optimizing the controller gains
for that linearized state. This enables the control algorithm
to swiftly adapt as the system transitions between different
operating points. Applying this principle to vehicular systems
offers a promising avenue to enhance their adaptability and
response time in dynamic operational environments.

III. RELATED WORKS

The evolution of multi-objective optimization (MOO) in
vehicular systems has witnessed a shift from static to dynamic
configurations. This section traces this progression, positioning
our contributions within this dynamic landscape, especially in
autonomous system reconfiguration.

Using MOO algorithms to tune linear controller gains for a
single use case has been demonstrated already in 2006 on a
highly nonlinear magnetic suspension system [1]. More recent
advancements in this domain demonstrate a significant shift
towards dynamic optimization. Given the typical limitations of
MOO algorithms in real-time applications, various strategies
have emerged. Notably, Ionescu et al. (2020) introduced a
prioritized multi-objective optimization approach in model
predictive control (MPC) for cyber-physical systems [9]. This
method strategically prioritizes specific design goals at each
iteration, effectively transforming the problem into a single-
objective optimization to reduce computational complexity.
While this approach adapts to dynamic system contexts, it
does not perform real-time MOO. In contrast, Taherinezhad
(2022) investigated real-time reconfiguration for a Bi-Copter
drone using MOO for dynamic parameter adjustment [2]. This
approach advances beyond static models by creating a multi-
objective look-up table, facilitating dynamic reconfigurability
based on pre-optimized parameters. However, it primarily
employs MOO in a preparatory phase, remaining susceptible
to dynamic environmental changes.

Our methodology differs considerably from the state of
the art in that we use a digital twin in parallel with the
operational system usage and update information on system
statuses and thus on use cases and operational parameters in
real time on the basis of observer models. By continually opti-
mizing parameters on MOO algorithm base, our system gains
adaptive capabilities, crucial for the multi-objective design
goals and dynamically changing and dynamically changing
environments typical of vehicular systems.
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Fig. 2: Overview of the Configuration Scheduling reference process.

IV. REFERENCE FRAMEWORK

In this section, we propose a novel framework which for the
first time solves the challenge of multi-objective autonomous
operation of a vehicular system. The framework consists of
a reference process (Configuration Scheduling) and an asso-
ciated reference architecture that enables its implementation.
The reference process describes how a physical system can
react to changes in scenarios by reconfiguring itself according
to a Strategy Repository and how this Strategy Repository is
updated to achieve autonomy. The reference architecture, then,
defines the necessary entities that are required to execute the
process.

A. Configuration Scheduling Reference Process

Similar to gain scheduling in control theory, our methodol-
ogy employs an enhanced LUT as a strategic repository for
pre-computed configurations. Our proposed reference process,
which we call Configuration Scheduling is articulated through
an activity diagram (Figure 2) delineating two primary swim-
lanes that are assigned to the physical system and the digital
twin as roles. The reference process encompasses two core
activities: updating the configuration of the physical system
based on current scenarios and constructing the strategic
repository. The latter is a systematic exploration of scenarios,
leveraging multi-objective optimization algorithms to identify
Pareto-optimal system configurations. Each role is responsible
for individual tasks.

Physical System: Configuration Scheduling on the Physical
System side consists of two main activities: First, the system
observes the current scenario (1.1) to update the configuration
in case a new scenario is detected (1.2). This simplistic
approach ensures a fast adaptation to a changing system con-
text. However, this approach does not account for unforeseen
scenarios, such as alterations in dynamics caused by aging
or material deterioration. To address this limitation, a Digi-
tal Twin is employed, that updates the Strategic Repository
dynamically during runtime.

Digital twin: As mentioned in the introduction of this
subsection, the process also describes how the Strategy Repos-
itory can be constructed by systematically exploring various
scenarios and finding Pareto-optimal system configurations. A
critical aspect of this approach is the use of simulation models.
These models enable the testing of different configurations
in a controlled environment, avoiding any potential harm to
the actual system. Therefore, our process follows the MAPE-

K loop, comprising four stages: Monitor, Analyze, Plan, and
Execute.

a) M: Monitor: The ’Monitor’ phase in our system
focuses on understanding the discrepancies between the sys-
tem’s actual and expected behaviors. This involves comparing
system outputs with those of the simulation (Step 2.1).

b) A: Analyze: The ’Analyze’ phase represents the trig-
ger, that leads to updating the strategic repository if the system
identifies a significant difference between the vehicular system
and it’s model. This step is crucial for updating the simulation
model, which, in turn, is essential for revising the strategic
repository.

c) P: Plan: Planning in our system entails updating the
strategic repository. This planning step can be decomposed in
three steps:

• Update of the vehicular system model (2.2): After a
significant change in the vehicular system fidelity has
been identified, we have to re-align the vehicular system
model with the vehicular system. The exact procedure
of this is highly dependent on the specific application
of the system. The complexity can range from a shift in
external system context, requiring parameter adjustments,
to more intricate dynamics changes necessitating system
identification methods like PILCO [10].

• Generation of Scenarios (2.3): After the vehicular sys-
tem model is updated, scenarios are systematically gener-
ated as a basis for the MOO algorithm. This step ensures
that the strategic repository will contain a comprehensive
range of operational contexts.

• Execution of MOO algorithm (2.4): The MOO algo-
rithm uses the updated vehicular system model and the
current scenario to identify Pareto Optimal Strategies for
the vehicular system. This includes generating output data
from the updated model, evaluating the cost on this data
and based on that identifying new configurations, that
minimize this cost.
d) E: Execute: Execution within our framework is

achieved by updating the strategic repository (2.5).
The decision point ”all scenarios covered?” acts as a

checkpoint within the MAPE-K loop. If all scenarios are not
yet covered, the process loops back to scenario generation
(2.3), indicating an iterative approach within the ’Plan’ and
’Execute’ phases to incrementally build and refine the strate-
gic repository. If all scenarios are covered, the system may
proceed to the observation of the vehicular system again (2.1),
completing the loop.

B. Reference Architecture
The reference architecture defines the entities which are

required to operate the Configuration Scheduling process. An
overview of those entities is shown in Figure 1.

a) Vehicular System and Vehicular System Model: The
vehicular system is the actual unit that interacts with the en-
vironment. It typically contains several sensors and actuators.
The vehicular system model defines the digital representation
of this vehicular system. It can simulate various operational
scenarios, generating predictive data for the strategy assess-
ment. It acts as a sandbox for evaluating and optimizing con-
figurations, feeding insights back into the Strategic Repository.



b) Process observer: Focusing on the internal dynamics
of the vehicular system, this component monitors performance
and operational states. The data collected is used to update the
Vehicular System Model and to trigger the action of updating
the Strategic Repository.

c) Strategic Repository: Our methodology employs a
LUT as a strategic repository for pre-computed configurations.
However, unlike in control theory, the scenarios in vehicular
systems cannot be encapsulated by a singular operation graph.
Instead, we define a scenario as a vector comprising N
elements, each representing a distinct aspect of the operational
context: Scenarioi =

[
si1 si2 · · · siN

]
In this formula-

tion, each element sij signifies a measurable external factor or
an operational condition relevant to the system’s performance.
Correspondingly, a configuration aligned with such a scenario
is articulated as a vector of M entries, delineating the system’s
parameters:

Configurationi =
[
ci1 ci2 · · · ciM

]
These parameters are tuned to address the specific require-
ments of the corresponding use-case.

Our Strategic Repository is thus conceptualized as a matrix
SR that correlates each scenario vector with its respective
configuration vector:

SR =


c11 c12 · · · c1M s11 s12 · · · s1P
c21 c22 · · · c2M s21 s22 · · · s2P

...
...

. . .
...

...
...

. . .
...

cN1 cN2 · · · cNM sN1 sN2 · · · sNP


d) Scenario Observer and Generator: The Scenario Ob-

server continuously monitors the vehicular system, checking
for changes and comparing the current scenario with entries
in the Strategic Repository. If a new or altered scenario is
detected, the observer triggers the system’s adaptation process,
ensuring that the vehicular system operates under the most
suitable configuration for the given conditions. Therefore,
while the design of the scenario detection mechanism is
application-dependent, its role in ensuring the adaptability
and effectiveness of the system remains central. It acts as a
critical interface between dynamic operational states and the
system’s configuration management, enabling a responsive and
context-aware operation. The Strategy Generator generates the
strategies which are required to fill the look-up table. Parallel
to the Scenario Observer, the component’s structure depends
on the specific application.

e) Cost Evaluation: This component evaluates the effi-
cacy and efficiency of proposed configurations. By analyzing
performance, resource utilization, and cost factors, it guides
the system towards cost-effective and high-performance oper-
ation.

f) MOO algorithm: The MOO algorithm is the critical
for refining the Strategic Repository. Utilizing the evaluated
cost data from the Vehicular System Model, it iteratively mini-
mizes objectives to determine the most effective configurations
for each scenario. This process ensures that the repository’s
strategies are both efficient and optimal.
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V. EXPERIMENTAL RESULTS

This section demonstrates the applicability of our proposed
reference framework on an exemplary base. In detail, we
apply the framework to a simulation model of a magnetic
levitation vehicle. The structure of this section begins with
detailing the implementation of the architecture and its related
elements as described in section IV-B. This is followed by
two evaluations: the first examines the system’s response to
rapid changes, and the second assesses its reaction to unknown
system configurations, thereby demonstrating the framework’s
autonomous adaptability.

A. Architecture Implementation
The following subsection will provide an overview on how

the reference architecture is implemented. Figure 3 provides
an overview on that.

a) Vehicular System and Vehicular System model: For
our evaluation, we use the vehicular system model also to
simulate the actual vehicular system. An overview of this is
vehicular system model is shown in Figure 3. It shows a
quarter segment of a Hyperloop electromagnetic suspension
system, comprising an electromagnet, chassis, and passenger
cabinet connected via four spring-dampener systems. The
electromagnet generates a force fmag to counterbalance grav-
itational forces. System control is achieved with a cascaded
controller, consisting of an inner loop for linearizing the
electromagnet’s current dynamics, and an outer loop using
a state-space controller to maintain consistent magnet-to-rail
distance.

In the initial design, the outer loop’s state-space controller,
configured with a LQR, simplifies the system by treating it
as a single mass. This configuration allows for control over
key dynamics, with k1 affecting air gap distance, k2 its rate
of change, k3 the magnetic force, and kI the integral of the
air gap distance. Each parameter in this state-space controller
is tailored to control a specific dynamic aspect of the system.

Moving away from the optimization of the simplified model,
our goal is to concurrently minimize passenger discomfort,
controller deviation, and energy consumption. This multi-
dimensional approach is aimed at significantly enhancing the
system’s overall performance and efficiency.

b) Scenario Generation and Detection: In this example,
we will focus on the impact of vehicle velocity on the control
system within a Hyperloop environment. The Hyperloop track
is modular, composed of several short segments to form a
complete track. This design is chosen due to manufacturing
constraints in producing long uninterrupted segments. Each
segment, however, exhibits slight variances. Notably, there is



a minor step, approximately 1 mm, between the segments of
the reaction rail. To simulate these variations, we introduce a
periodically occurring 1 mm deviation in the current air gap
between the vehicle and the track. The frequency of these
deviations correlates with the vehicle’s speed. With a segment
length of 5 meters and a vehicle speed ranging from 0 to 900
km/h, this results in excitation system excitation frequencies
between 0 Hz ≤ Velocity

5m ≤ 50 Hz. For enhanced analysis,
we categorize our study into seven discrete scenarios, termed
’scenario bins’. Each bin, denoted by ui(where i ranges from 1
to 5), represents a different frequency. The specific frequencies
for each bin are outlined in the Table I. To select the scenario
from the Strategic Repository, a Fast-Fourier-Transformation
is used to identify the primary excitation frequency of the
system. This allows us to identify the correct configuration of
the process.

c) Strategy Repository: The Strategy Repository is a
matrix, in which each row shows a configuration and its corre-
sponding scenario. The configuration that we are reconfiguring
are the gains of the outer loop controller, whereas the scenarios
the velocity bins are Each row will therefore be defined as
follow:

Strategy Repositoryi =
[
k1 k2 k3 kI ui

]
with i indexes the corresponding scenario of the scenario bins.

d) Cost Evaluation: The cost evaluation is conducted
using three metrics:

Cost =

Passenger Discomfort
Controller Deviation
Energy Consumption

 =

xy
z


• Passenger Discomfort: This is quantified by the root

mean square (RMS) of the vertical acceleration, reflecting
passenger discomfort. It is weighted by the Sperling
weighting factor, which highlights frequencies typically
perceived as uncomfortable by humans [11].

• Controller Deviation: Defined as the average of the
squared deviations from the target airgap, set at 10mm.
This measure reflects the precision and stability of the
controller.

• Energy Consumption: Calculated as the total power
consumed by the electromagnet, minus a baseline power
necessary for supporting the static weight. This approach
focuses the metric on energy used for active system
control, rather than static load maintenance.
e) MOO algorithm and Pareto Point selection: As al-

ready stated in section V-A, our goal is update the state-
space controller parameters of the outer control loop, that
controls the macro-motion dynamics of the system. We there-
fore perform an optimization of the initial uni-objective LQR
controller gains. To do so, we use the NSGA-II genetic
algorithm from the pymoo library [12].

The algorithm generates a set of Pareto points, each an
optimal solution. We have formulated a metric to automatically

Bin Name u1 u2 u3 u4 u5

Frequency (Hz) 10 20 30 40 50

TABLE I: Scenario bins and their corresponding frequencies
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Fig. 4: Projection of the Three-dimensional target space to two dimen-
sions showing the initial configuration (red diamond), optimization
results and Pareto point selection for reconfiguration.

select the most suitable Pareto point. Generally, this metric is
highly dependent on the use case. In our case, the controller
deviation, which is our main indicator for safety should be
not higher as the initial evaluation. Furthermore, the variables
should perform a trade-off, which we model as maximizing the
euclidic distance from the initial point to the Pareto points.

Before applying this metric, it is essential to normalize
the dimensions of the Pareto points and the initial evaluation
point to ensure a balanced contribution of each dimension
to the Euclidean distance calculation. We employ MinMax
normalization, scaling each dimension independently so that
its values fall within the range [0, 1]. This normalization step
is crucial, especially when the scales of the dimensions vary
significantly.

pselected = arg max
pi∈{p∈P |yp≤yI}

√
(xi − xI)2 + (yi − yI)2 + (zi − zI)2

With pselected representing the chosen Pareto point, that has
the biggest distance from the initial point I = (xI , yI , zI),
under the given constraint. P is the set of all Pareto points.
pi = (xi, yi, zi) is an individual point in P. The subset
{p ∈ P | yp ≤ yI} denotes the set of points in P that satify
to the constraint that set their second component (controller
deviation) is less than or equal to that of I .

f) Process Observer: In our evaluation of the system’s
response to a spring break scenario, we operate under the
assumption that the updated dynamics are immediately known.
This is based on the integration of advanced sensors in each
spring, capable of detecting and quantifying changes like
spring breakage, thereby facilitating an immediate update of
the model.

B. Evaluation of Reaction to Fast Changes

To evaluate the system’s reaction to fast changes, we an-
alyzed its performance across the defined scenarios in V-A.
Figure 4 shows the optimization of the scenario of 10Hz. The
initial system evaluation (marked as a diamond dot) represents

Frequency x (%) y (%) z (%)
10 Hz -82.11% -22.60% -68.13%
20 Hz -58.35% -18.87% -58.37%
30 Hz -78.37% -13.47% -46.67%
40 Hz -89.35% -14.23% -34.55%
50 Hz -92.21% -17.18% -35.09%

TABLE II: Cost Decrease at Different Frequencies
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Fig. 5: Reaction and reconfiguration to a spring breakage.

the performance of the single-objective optimization of the
simplified model as presented in section V-A. The Pareto
points, which are produced by the optimization algorithm
are marked as blue dots. We select the most appropriate
Pareto point pselected based on our predefined metric from
V-A, with the chosen performance transition shown as a solid
blue arrow. Other potential solutions, represented by semi-
transparent arrows, are acknowledged but not explored in this
study. Table II shows how the cost decreases for the Scenarios
shown in Table I.

This evaluation underscores the robustness of our Con-
figuration Scheduling methodology, particularly its ability to
effectively discern Pareto optimal solutions in a variety of
scenarios. Our approach demonstrates a marked improvement
in performance across all design goals at higher frequencies.
This improvement in performance at higher frequencies high-
lights the efficacy of the methodology, particularly when com-
pared to traditional single-objective optimization approaches.
It demonstrates not only the versatility of the system in
handling diverse operational conditions but also underscores
the advantages of a multi-objective optimization framework
in achieving balanced and improved outcomes across various
design goals.

C. Evaluation of Reaction to Unknown System Context

To assess our system’s adaptability to unforeseen changes,
we extend our scenario by a spring breakage in the connection
between the passenger cabinet and the service module as part
of the previously optimized 10Hz frequency scenario. Figure
5 depicts the system’s performance metrics response to this
incident. Initially, indicated by the green x, the system per-
forms optimally. Upon spring breakage, a significant increase
in passenger discomfort (by a factor of 42) is observed, while
energy consumption slightly rises and controller deviation
decreases. This is indicated with the red arrow.

The system, detecting a drastic reduction in passenger
comfort, initiates an update to the vehicular system model,
triggering the optimization algorithm to compute new con-
troller parameters. This transition, marked by the blue arrow,
follows the same rules for selecting the Pareto point as the
evaluation in section V-B.

The autonomous reconfiguration effectively mitigates the
escalated passenger discomfort to a significant extent. Notably,
the new dynamics allow for further optimization of energy
consumption and controller deviation beyond the initial set-
tings, showcasing the system’s resilience and adaptability to
dynamic operational conditions.

VI. CONCLUSION AND FUTURE WORKS

In this study, we introduced a novel reference framework for
autonomous reconfiguration of vehicular systems in the form
of Pareto-optimal configurations. This approach is versatile,
accommodating multiple use-cases and catering to both rapid
and gradual changes. In a detailed experimental evaluation
applying the Configuration Scheduling we showed that the op-
timization significantly improves the performance of a control
system for our design goals of minimizing passenger discom-
fort, controller deviation, and energy consumption. We further
showed, that the enormous increase of passenger discomfort
in the scenario of a spring breakage scenario could be partially
mitigated.

Looking ahead, our objective is to augment this architecture
with an advanced goal-management layer. This addition will
not only enable the prioritization of specific design goals under
varying conditions but also offer the flexibility to emphasize
one or more of these goals as needed. Furthermore, we plan to
incorporate a feature for setting constraints into this layer, such
as minimum design goal thresholds to ensure safety assurances
of the system even under diverse operational scenarios.
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