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Abstract—By introducing the Web of Things (WoT) standard,
W3C aims to provide a unified interface description format to
counter the high fragmentation of the Internet of Things (IoT)
landscape. This description format, called the Thing Description
(TD), is a static, JSON-Linked Data (JSON-LD) document that
is both human and machine-readable. It lists all possible interac-
tions of a Thing and any additional metadata needed to perform
these interactions, abstracting away from the internal behavior of
Things. As such, the static TD lacks a formal way of describing
highly dynamic, physical Things and how the availability of
specific interactions may depend on the current physical state
of the Thing. In this work, we introduce Stateful-WoT, a method
and an open-source implementation that facilitates the modeling
of Things and their behavior using State Chart XML (SCXML)
state machines and Modelica models. The resulting hybrid state
chart is serializable and exchangeable, enabling the exchange
of the state chart alongside the TD. Our proposed extension
to SCXML allows us to fully model a Thing and its interface,
facilitating the automatic generation of implementation code
and reactive Digital Twins (DTs). We showcase the benefits and
viability of our approach and implementation by modeling and
generating the DT of two highly dynamic Things with high
accuracy. Our proposal makes developing WoT applications more
accessible, faster, and much more reliable for complex industrial
scenarios.

Keywords—Internet of Things, Web of Things, State Machines,
Digital Twins, Simulation

I. INTRODUCTION

Interconnected Cyber-Phyiscal Systems (CPSs) are the core
of Industry 4.0. Such systems can utilize their network
for Machine-To-Machine Communication to achieve unprece-
dented automation and intelligence and, in doing so, maximize
the efficiency of manufacturing and production. To achieve
such a high interconnection of devices and systems, Industry
4.0 must employ Internet of Things (IoT) technologies that
facilitate this. As such, many companies and vendors pro-
vide their own IoT solutions and architectures that aim to
streamline the process of integrating CPSs and connecting
them. However, this resulted in the high fragmentation of
the IoT landscape, limiting the interoperability of different
IoT solutions and defeating the goal of integrating IoT in the
industry.

To achieve this, the W3C proposed the Web of Things
(WoT), a set of building blocks built around existing web
standards and technologies that aims to unify the heteroge-
neous IoT landscape. One of these building blocks is a meta-
data description format called the Thing Description (TD), a
JSON-Linked Data (JSON-LD) document that is both human-
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Fig. 1: In this paper, we propose a new building block for the Web of Things
(WoT) for describing the behavior of Cyber-Phyiscal Systems (CPSs) using
State Chart XML (SCXML) and Modelica models. We show that using our
proposed method, it is possible to provide a serializable and exchangeable
behavior description format alongside the WoT Thing Description (TD) that
can be used to automatically generate a Digital Twin (DT) using state charts
and Functional Mock-up Units (FMUs) that can be used for simulations.

and machine-readable. The TD describes the web interface
provided by the described device or CPS, called a Thing in
the context of this paper, including the protocol needed for the
communication and payload structures.

Problem Statement: Using existing web technologies,
the Web of Things (WoT) provides its building blocks using
tried-and-true Web formulas, key enablers of the current Web
ecosystem, including servers, browsers, search engines, and
more. However, industrial Cyber-Phyiscal Systems (CPSs)
provide challenges these technologies are ill-suited to handle.

In its current form, the Thing Description (TD) statically
lists all possible interactions with a Thing. On the other hand,
CPSs may include highly dynamic actors, such as conveyor
belts and robot arms, that expose a dynamically updated
interface based on their current state. For example, industrial
motor drivers usually require a sequence of operations to start
running, and each of these operations is tied to a certain motor
drive state. Another example is a robot arm that has reached
its workspace limit and, therefore, does not allow turning in
a certain direction based on its current state. Describing these
complex Application Programming Interfaces (APIs) using a
static TD is currently impossible, as it requires an additional



1 {"@type": "Thing",
2 "title": "Smart Microwave",
3 "properties": {
4 "microwaveState": {
5 "title": "Microwave State",
6 "readonly": true,
7 "forms": [{
8 "href": "http://example.co/state",
9 "contentType": "application/json",

10 "op": ["readproperty","writeproperty"]
11 }]
12 }
13 },
14 "actions": {"turnOn": {"title": "Turn On"},
15 "turnOff": {"title": "Turn off"}},
16 "events": { "cookingDone": {}}}

Listing 1: This is an example Thing Description (TD) for a smart microwave
that can be turned on and off and that sends a notification to listeners
once the cooking is done. Each TD categorizes the interactions that the
underlying Thing is exposing to one of three type: "properties" (Line
3), "actions" (Line 15) and "events" (Line 16). "microwaveState"
(Lines 4-13) shows how a full interaction affordance could look like. The rest
of the TD was omitted for brevity.

description of the underlying behavior of a device, which the
TD abstracts from by design.

Contributions: In this paper, we propose Stateful-WoT,
an approach to enhance the WoT by adding an additional build-
ing block for describing the behavior of Things using the open
standards W3C State Chart XML (SCXML) and Modelica,
facilitating the modeling of the Things, automatic generation
of implementation code and the associated, extended TD and
the exchange of behavioral models. In particular, we perform
the following contributions:

• We introduce a formalized mapping between the seman-
tics of the WoT model and state charts in Section III-A.

• We propose an extension to both the SCXML and TD
that captures the proposed mapping in Section III-B.

• We introduce an algorithm that takes an extended
SCXML as an input and automatically generates the im-
plementation code of the modeled Thing and its extended
TD in Section III-B.

• We showcase the open-source implementation of our
proposed approaches in Section IV.

• We evaluate our approach and implementation based on
different use cases in Section V.

The rest of the paper is structured as follows: We pro-
vide a short overview of the WoT, SCXML, Modelica, and
Functional Mock-up Interface (FMI) standards as needed to
understand the rest of this paper in Section II-A, Section II-B,
and Section II-C, respectively. We discuss related work in
Section VI and Section VII concludes.

II. BACKGROUND

A. The Web of Things (WoT) and the Thing Description (TD)

The WoT [1] is an amalgamation of multiple web standards
aimed at ensuring the interoperability of Internet of Things
(IoT) technologies while keeping new prescriptions to a mini-
mum. It introduces a set of building blocks that, together, form
an ecosystem for interacting with any device or service, called

Thing in the context of this paper, in an easy and streamlined
manner. The core building block of the WoT is the TD [2], a
description format written as a JSON-Linked Data (JSON-LD)
document and is, thus, highly human- and machine-readable.
The TD describes API provided by a Thing, regardless of the
underlying protocol, and any metadata required for interacting
with a Thing. It introduces three main types of interaction
affordances that a Thing can provide:

1) Property Affordances provide operations for interact-
ing with internal states of a Thing, such as reading,
writing, or observing them.

2) Action Affordances provide operations for handling
longer processes that a Thing can perform, such as
invoking or canceling these actions.

3) Event Affordances provide operations for subscribing
or unsubscribing to event streams and notifications.

Each affordance may include a JSON Schema describing the
expected input and/or output payload of the affordance. The
mapping between affordance operations and the underlying
communication protocol is done using a Protocol Binding [3].
In WoT, Things that expose a TD are called Producers, while
those that consume a TD are called Consumers. Furthermore,
the WoT proposes an optional Scripting API for developing
the application logic of Things in its ecosystem. Using the
Scripting API simplifies the process of developing WoT ap-
plications. An excerpt of a TD for a smart microwave can be
viewed in Listing 1.

B. State Chart XML (SCXML)

SCXML [4] is a standard introduced by W3C for describing
Harel State Charts [5] in a serializable and machine-readable
format with the original goal of providing a general-purpose
execution environment for CCXML and VoiceXML. However,
SCXML is not restricted to this use case and has been used
for other scenarios, such as model-driven device coding or UI
control.

SCXML allows the modeling of all state chart formalisms.
In addition to normal states defined in a finite state machine,
state charts introduce orthogonality and depth by introducing
parallel states for modeling concurrency and compound states,
which contain other child states, respectively. Modern state
charts also introduce the notion of the extended state for
modeling state variables that are infeasible or impossible to
model using a finite amount of states. The state machine can
perform actions on the entry or exit of any state or as a
result of a transition. Transitions may occur when an event
is triggered, a condition on the finite states or extended states
or the triggering event is met, or always. Events may include
additional data, such as data payloads. SCXML allows the
state machine to raise or send messages to itself or external
services. SCXML can also model state machines that invoke
services, such as external web services or other state machines.
The syntax of the executable code of the state machine and
data expressions are based on the user-defined data model such
as "javascript" or "xpath".



1 <?xml version="1.0"?>
2 <scxml xmlns="http://www.w3.org/2005/07/scxml"
3 version="1.0" datamodel="ecmascript" initial="off">
4 <datamodel>
5 <data id="door_closed" expr="true"/>
6 </datamodel>
7

8 <state id="off">
9 <transition event="turn.on" target="on"/>

10 </state>
11

12 <state id="on" initial="idle">
13 <state id="idle">
14 <transition event="door.close"

target="cooking">↪→

15 <assign location="door_closed" expr="true"/>
16 </transition>
17 </state>
18

19 <state id="cooking">
20 <transition event="door.open" target="idle">
21 <assign location="door_closed"

expr="false"/>↪→

22 </transition>
23 </state>
24 </state>
25 </scxml>

Listing 2: This is an excerpt of an State Chart XML (SCXML) file that
models a microwave. It can be turned on (Lines 9&12), and once it reaches
the "on", it can be either in "idle" or "cooking" sub-states (Lines 13-
22). An important feature of SCXML is the capability to model an Extended
State (Lines 4-6) containing variables that are not necessarily discrete and
countable in nature.

C. Modelica and Functional Mock-up Interface (FMI)

Modelica [6] is an effort to provide an open, mathemati-
cal modeling language for CPSs across multiple engineering
domains and is currently maintained by the Modelica Asso-
ciation. Using Modelica, it is possible to describe systems of
differential or discrete time equations that can be parsed and
solved by dedicated software. The Modelica language is also
object-oriented by design to facilitate easy development and
code reuse. A Modelica model comprises the interface decla-
ration and the equations declaration. The interface declaration
describes all external and internal simulation variables, their
types, and their direction in the case of external variables
as either input, output or parameter. The equations
declaration describes the model as a system of differential,
algebraic, and discrete equations, which a Modelica tool can
parse and usually convert to a set of ordinary differential
equations and solve using appropriate solvers.

The Modelica Association has also introduced another stan-
dard called the Functional Mock-up Interface (FMI) [7] that
enables the exchange of simulation models across the simu-
lation environment by combining a description format and C-
based binaries required to run the simulation. The description
format in XML can be considered another representation of
the equations system that a Modelica model can define. Based
on the FMI version, the description format may include links
to the executable files that can run the simulation. Two types
of FMIs are Model Exchage (ME) and Co-Simulation (CS).
While an extensive comparison between both types is out of

scope, the main difference between an ME FMI and a CS FMI
is that CS FMIs can be considered as a black box component
that includes its own solver as well, while ME FMIs rely on
the simulation environment providing its own solver for the
simulation system. The executable code of am FMI is called
Functional Mock-up Unit (FMU). Our paper here utilizes FMI
2.0 standard.

III. STATEFUL-WOT

In this section, we introduce our approach Stateful-WoT by
first introducing the formalism for describing WoT producers
as event-driven state charts and then explaining the extensions
needed in SCXML and TD to accommodate the described
formalism.

A. Formalism

Looking at possibilities to model the application WoT
producers, an option would be an event-driven finite state ma-
chine, defined as a tuple ⟨S, s0, E,Es, O, en, ex, T ⟩, similar
to definitions in [8] where

• S is the finite set of States,
• s0 ∈ S is the initial state,
• E is the set of all possible external events triggering a

transition in the state machine,
• Es is the set of all events raised by the state machine,
• O is the set of all possible outputs,
• en : S → (Es ∪O)∗ are entry actions of a state,
• ex : S → (Es ∪O)∗ are exit actions of a state,
• T ∈ S × (E ∪Es)×G× (O ∪Es)

∗ × S is the set of all
transitions as a tuple ⟨s, e, g, o, ts⟩, where s ∈ S denotes
the source state, e ∈ (E ∪ Es) denotes the guard event,
g ∈ G denotes a logical guard over S, and ts ∈ S denotes
the target state. ∗ denotes the Kleene Star operator.

Each request can be modeled as an event trigger, which
would cause a transition in the application state if the state
machine is in an appropriate state. But, as discussed in
Section II-B, modeling complex systems using finite state
machines can become quickly infeasible or outright impossible
because of the limited memory that a state machine has, i.e.,
the finite amount of states. As such, finite state machines
in their classical definition are not Turing Complete and
thus cannot model any arbitrary application logic for a WoT
producer.

By introducing the notion of the extended state Sext, the
finite state machine gains a powerful tool for emulating an
unbounded memory, making it equivalent to a complete Turing
machine. Formally, the tuple introduced above is extended to
⟨S, Sext, s0, sext,0E,Es, O, en, ex, T ⟩, where:

• Sext is the set of all extended state variables. Each of
these variables is in a finite, countable set, an infinite,
countable set, or an infinite, uncountable set.

• sext,0 is the initial configuration of the extended state.
• O needs to be extended to allow for extended state

assignments
• T ∈ S × Sext × (E ∪ Es)×G× (O ∪ Es)

∗ × S × Sext



While State Charts introduce the notion of compound states
and parallel states, a formal difference to finite state machines
discussed here, it is always possible to flatten a state chart to
a state machine using various approaches [8], [9]. Thus, state
charts and machines are mathematically equivalent, but state
charts are more expressive, minimizing the number of states
needed to model a system.

Finally, we can extend our model further with continuous-
times and time-discrete models that take effect in certain
states and thus achieve a hybrid state chart model capable
of modeling any WoT CPS, including its physical behavior. A
continuous-time model M is defined as:

M : Pd × Id → O′
d (1)

where
• Pd = dom(P ∗); P ⊆ Sext is the set of domains of

time-invariant parameters from a subset P of Sext,
• Id = dom(I∗); I ⊆ Sext is the set of domains of time-

variable inputs from a subset I of Sext,
• O′

d = dom(O′+); O′ ⊆ Sext is the set of domains
of time-variable outputs from a subset O′ of Sext. The
apostrophe was added to distinguish this set from the set
O defined for state machines.

To utilize our extended state chart for modeling WoT CPSs,
a mapping between the semantics of both models needs to
exist. As such, we consider the interaction affordances model
of the WoT. A TD can be considered as a set containing three
disjoint sets of interaction affordances, i.e.:

TD = {Props,Actions,Events} (2)

where
• Props is the set of all property affordances
• Actions is the set of all action affordances
• Events is the set of all event affordances
• Props ∩Actions = ∅; Props ∩ Events = ∅;

Actions ∩ Events = ∅
Each of these affordances may allow a certain set of operations
to be performed on them. We define a function Op that outputs
the operations of a certain affordance as follows:

Op : Props → {read,write, observe, unobserve}+ (3)
Op : Actions → {invoke} (4)

Op : Events → {subscribe, unsubscribe}+ (5)

In WoT, each operation is performed by sending a request.
The arrival of the request to the Producer can be modeled
as an event trigger, causing a transition in the state chart, as
discussed before. The request’s payload is sent along with the
event trigger for processing in the state chart. As such, it is
possible to model systems in which the API exposed by the
Producer depends on the current state. However, some opera-
tions may not necessarily change the state of the state chart and
do not need to be modeled as a transition. These operations
are {read, observe, unobserve, subscribe, unsubscribe}, as
these are the operations meant for getting data from a Producer

and usually do not change the state. Therefore, it should be
possible to model these operations without having to tie them
to an event trigger if not needed. This implies that if an
operation is not tied to an event, it can be performed without
any restrictions. However, this may not be the desired model.
As such, there needs to be a way to specify in which states
an eventless operation can be performed.

Property Affordances represent operations that can be per-
formed on a Producer’s internal state variables. In a state chart,
these are either a subset of its compound states Scom or a
subset of its variables in the extended state Sext or formally:

Props ⊆ Scom ∪ Sext (6)

This exact subset needs to be specified in the model.
On the other hand, Event Affordances represent a subset of

all internal signals that a state chart raises, or formally:

Events ⊆ Es (7)

This subset needs to be specified in the model as well.
Finally, each operation can have a synchronous or asyn-

chronous response. A synchronous response contains all the
information about the result of the operation, while an asyn-
chronous response usually only signifies whether a request
was received successfully or not. If a response is handled
synchronously, the state chart must include at least one on-
entry, on-transition, or on-exit send action that responds to
the desired request.

B. Extending SCXML and TD

While SCXML is capable of modeling all aspects of state
charts, it does not provide semantics for modeling WoT
interactions. As such, we propose an extension in the form of
XML elements that describe the mapping between an SCXML
instance and its related TD. The extension does not redefine
any of the SCXML specifications but adds the information
needed to describe the Thing’s interface. Specifically, our
extension describes the following:

1) All the interaction affordances that the state chart-
modeled Thing provides.

2) Each operation that an affordance provides and the
following information about it based on the detailed
discussion in Section III-A:

a) The event e ∈ E that the request raises in the
state chart once received. This is mandatory for an
invoke operation but optional for all others.

b) If an event is not specified, the operation can still
be modeled as state-dependant, available only in
the specified states.

3) Schemas for payloads as SCXML does not provide a
way to describe schemas for its events and messages,
nor the domains of its extended state.

4) If a property affordance is tied to a state s ∈ S or a
variable sext ∈ Sext following Equation 6.

5) Which state chart signal is an event affordance tied to
following Equation 7.



The proposed extension is a child element of the
root element of the SCXML <scxml:scxml> called
<wot:affordances>.
<wot:affordances> can have three types of children

<wot:property>, <wot:action> and <wot:event>.
A <wot:property> must have either the attribute

stateElement or dataElement. The value of
the stateElement attribute is a string pointing to
the id of either a compound <scxml:state> or
<scxml:parallel> element. Similarly, the value of
the dataElement is a string pointing to the id of
an <scxml:data> element, which is a child of the
<scxml:datamodel> that represents the state charts
extended state.

A <wot:event> element must specify the attribute
emitEvent, whose value is a string that points to an event
sent by the state chart using the <scxml:send> element.

Each of the three elements above can have two types
of child elements: <content> element, which can occur
at most once, and <wot:op>. The <content> element
can only have text content as a child and is meant to be
populated with the JSON description of the interaction affor-
dance according to the TD syntax. The <wot:op> has the
required attribute type and the optional attributes event,
stateDependant and availableIn. type is a string
value that marks the types of the affordance. Possible values
are the same values for the "op" keyword in the TD such as
"readproperty", and "invokeaction". The event
string attribute ties the operation to a transition event in the
state chart. If event is not specified, the optional boolean
attribute stateDependant marks the operation as state-
dependant and the string attribute availableIn lists the
ids of the states accordingly as a space-delimited list.

With these extensions, we fulfill all the requirements for
describing highly dynamic APIs in a declarative manner.
Additionally, we want to capture physical behavior in the
model as well and, therefore, introduce an additional element
<wot:model>. This element can only exist as a child
element of <scxml:onentry> inside a <scxml:state>
or <scxml:parallel> element. It has only one required
attribute id and can have two types of child elements:
a <content> element, which has to occur exactly once,
and one or more <variable> elements. The <content>
element can only have text content as a child, and that
content must be a Modelica model. <variable> elements
have two required string attributes name and location and
no children. The <variable> elements are meant to map
input, parameter and output variables of the Modelica
model to a corresponding <scxml:data> element. The
name stands for the variable name inside the Modelica model,
and the location points to the id of the corresponding
<scxml:data>.

With these extensions in place, we are capable of modeling
all aspects of the hybrid WoT CPSs as discussed in the
Section III-A.

We also propose a set of extensions for the TD itself to

accommodate the added information about a Thing’s behavior.
Each interaction affordance that includes operations restricted
based on the current state of the state chart has an additional
keyword "scxml:{{interactiontype}}". The value
of this keyword is an object containing each restricted opera-
tion as a JSON property. These, in turn, are objects that contain
the properties "affects", "availableInState" and
"event". The "affects" property lists all the property
affordances that are affected or changed by performing this
operation. The "availableInState" property lists all the
state variables restricting the operation that are exposed as
property affordances, as only exposed states can be read and
checked by Consumers. The "event" property ties the oper-
ation to the specific event inside the linked SCXML file. Addi-
tionally, each of the states listed in "availableInState"
may appear as a keyword, and its value is an array listing
all conditions and guards that are needed to perform the
transition. All the additional information provided inside the
TD is automatically generated from the SCXML file and is
meant to help developers build applications more easily and
with fewer mistakes or undefined behaviors.

C. Code Generation

The extended SCXML we propose includes enough infor-
mation about the described Thing’s behavior and its exposed
API. As such, it can be used to automatically generate both the
extended TD and the underlying application logic and behavior
of the Thing using only the SCXML file as input. We are not
interested in discussing the generation of the interpreted state
chart, i.e. the code that implements the state machine itself
and the transitions based on events. Rather, we are interested
in discussing the process of pre-processing the state chart for
simulation purposes as well as the process of generating the
extended TD.

Once the SCXML document is parsed, we check all the
operations under the <scxml:affordances> element.
While we allow property writes not constrained by state
or tied to an event, under the hood, all assignments must
be triggered by an event in the state chart. This means an
additional transition is needed to permit writing properties
without restrictions. If such an operation is detected while
parsing, a wrapper <scxml:parallel> state is added to
the state chart on the top level that has both the original
state chart and an additional <scxml:state> as children.
The added child <scxml:state> has a transition to itself
that detects property write events and assigns the input of
the operation to the correct <scxml:data> location. A
similar thread of reasoning is needed when handling Modelica
models. Whenever a Modelica model is detected, wrapper
<scxml:parallel> state is added that has an additional
child <scxml:state> acting as a clock that triggers tick
events at constant intervals and allows the start chart to handle
variable updates. As a result, the state chart can also model
the notion of time in a quantized fashion.

To generate the extended TD, we perform the following
step:
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Fig. 2: Our tool generates a Digital Twin (DT) as a combination of a
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The NodeJS script, written in Typescript, uses the node-wot library to handle
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Python script using the PyFMI and executed as FMUs. The NodeJS script
and the simulation server are connected using WebSockets.

1) We gather all the operations that are listed under
<scxml:affordances> in an array and include its
interaction type, the event it is tied to if applicable
or otherwise the states listed in the availableIn
attribute.

2) While parsing the <scxml:transition> elements,
we check if this transition is triggered by an event tied
to an operation in our array.

3) If the previous condition holds true, we check if the
state that the <scxml:transition> element is in
is the child of a compound <scxml:state> or
<scxml:parallel> that is mapped to a property
affordance.

4) If the previous condition holds true, we now add the
id of that state to the "availableInState" of
the corresponding entry in the TD and we add the
name of the corresponding property affordance to the
"affects" keyword.

5) We check if the transition has any <scxml:assign>
elements that point to a <scxml:assign> element
which is mapped to a property affordance. If that is
the case, we add the name of the associated property
affordance to the "affects" keyword.

IV. IMPLEMENTATION

We have implemented our methodology as a fully open-
source solution1 that is able to parse an extended SCXML
file, generate the code for implementing the state chart logic
described in the state chart, generate the extended TD based
on the SCXML file and generate the WoT stack that handles
exposing the interaction affordances.

Furthermore, our solution can automatically generate FMUs
for the models inside the extended SCXML and execute them
as part of the state chart.

Our solution is built on top of node-wot2, the reference
implementation of the WoT Scripting API, XState3, a library
for handling state charts in Typescript, OpenModelica4, an

1 Available through link 2 https://github.com/eclipse-thingweb/node-wot
3 https://stately.ai/docs/xstate 4 https://openmodelica.org/

Fig. 3: Shown here is the Pantilt-HAT Module used in our second evaluation.
The small robot consists of two servo motors, one for panning and one for
tilting. Each servo motor can be controlled separately.

open-source modeling and execution environment for Model-
ica models, and PyFMI5, a Python-based library for executing
FMUs. The exact architecture can be viewed in Figure 2.

Our implementation is written in Typescript. After parsing
the SCXML document, our solution extracts all Modelica
models inside the state chart to different .mo files, automat-
ically generates the XState representation of the state chart,
and generates the node-wot interface that provides the WoT
interaction affordances. The communication between the WoT
interface and the state chart is done using an eventing system,
where the WoT interface would send events coupled with
payloads to the state chart. The state chart would raise events
inside an event bus to signal if a request’s response is available,
sending the appropriate response body as well. If an operation
is not allowed in the current state of the modeled Thing, the
generated DT automatically rejects the request, stating that the
current operation is not allowed.

When executing a state chart that includes Modelica models,
a dockerized environment that includes OpenModelica and
PyFMI is used to handle the simulation. First, the .mo files are
copied over to the docker environment and converted to ME
FMUs using OpenModelica. Then, these models are loaded
PyFMI in a Python Script that also provides a WebSockets
interface for starting, resetting, stepping through, and terminat-
ing each FMU. All FMUs implement an explicit Euler solver.

V. USE CASES AND EVALUTION

To evaluate our approach and implementation, we showcase
the models of two real-world devices using our proposed
extended SCXML and TD. The first device we model is
Schneider Electric’s Altivar 320 Variable Frequency Drive6.
Specifically, we model the operating state diagram defined in
the related Modbus manual [10]. The operating state diagram
defines a set of operating states and a set of strict transitions
that need to be performed in a certain sequence to reach the
operating state. Normally, the TD is not expressive enough

5 https://pypi.org/project/PyFMI/ 6 https://www.se.com/us/en/product-range/63440-altivar-320-variable-frequency-drive-vfd/

https://github.com/FadySalama/Stateful-WoT-Submission/
https://github.com/eclipse-thingweb/node-wot
https://stately.ai/docs/xstate
https://openmodelica.org/
https://pypi.org/project/PyFMI/
https://www.se.com/us/en/product-range/63440-altivar-320-variable-frequency-drive-vfd/
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Fig. 4: This graph shows the comparison between the pan and tilt positions of the Pantilt module and its DT. The numbering follows the sequence of
interactions described below. The continuous lines represent the positions of the real motors, dashed lines are for the DT. Please note that the timing is not
fully accurate due to the NodeJS environment not guaranteeing exact timeouts.

to describe these restrictions on the operations. However,
using our proposed extensions, we were able to fully model
the operating state diagram, ensuring operation can only be
performed in the appropriate drive state and are able to
generate a reactive DT to test the behavior of the device and
build applications without access to an actual device. The
resulting state chart and DT are omitted for brevity but are
accessible in our repository.

To test our approach regarding modeling the physical behav-
ior of IoT, we modeled a small 2-Degrees of Freedom (DoF)
robot attached to a Raspberry Pi 3, shown in Figure 3. One
servo motor is used for panning, while the other is used for
tilting. We modeled the state chart such that the DT would
have the same exact interface as the physical device, i.e. both
the physical device and TD provide the same operations. We
described the motion profile of the two servo motors using
Modelica models in the extended SCXML. Each servo motor
can be triggered to move separately, and therefore, both motors
were modeled as children to a <wot:parallel> state.
We then tested the accuracy of the generated DT’s behavior
compared to the physical device by sending the same requests
to both the physical device and the DT and comparing the
position of both servo motors of both entities. The sequence
of interactions performed was:

1) Waiting for 1 s
2) Panning Continuously for 3 s with a speed of 15 °/s
3) Stopping any movement and waiting for 0.5 s
4) Tilting Continuously for 3 s with a speed of -8 °/s
5) Stopping any movement and waiting for 0.5 s
6) Panning and tilting continuously with a speed of -10 and

12 °/s, respectively, for 10 seconds.
7) Stop logging

The resulting motion of the real motors and their DTs can
be viewed in Figure 4. The numbering on top of the figure
corresponds to the sequence of interactions listed above. The
position of the servo motors was polled every 50 ms. The
resulting graph shows the alignment of both motion profiles
to a very high degree. The deviation between the actual and
the virtual position was calculated to be 1.54° and 0.73° for

the pan and tilt position, respectively. The maximum deviation
was 3.7° and 2.7° for pan and tilt position, respectively.

As such, we conclude that our method provides a viable
solution for modeling WoT CPSs accurately, allowing the
generation of highly representative DTs that can be used for
development, simulation, testing, and prediction.

VI. RELATED WORK

Modeling and capturing the behavior of devices and even
entire systems in the context of the WoT has been a continuous
endeavor in the last decade.

[11] introduced a model-driven approach for designing
and implementing WoT Servients, promoting an easier and
more streamlined approach for developing WoT Things on
top of the Eclipse Modeling Framework. The model can be
designed using a GUI, and given a model, the framework is
able to generate the device’s implementation code. However,
the modeling framework only implements the WoT interface of
the Thing and is not exchangeable. The Thing’s behavior needs
to be implemented separately. This stands in contrast to our
methodology that aims to provide an exchangeable modeling
format that models both the behavior and WoT interface.

[12] proposes a description format called the System
Description (SD) for modeling entire WoT mashups and the
behavior of the mashup controller. The SD has a similar
structure to a TD with added keywords to describe execution
paths as an ordered list of WoT interaction. Being a JSON-LD
document, it is exchangeable and machine-readable and can
be converted to an equivalent UML Sequence Diagram repre-
sentation for viewing. It is also used to automatically generate
the application logic for the mashup controller.

[13] aims to capture the behavior of physical entities by
modeling Things as Markov Decision Processes, learning the
behavior as probabilistic state-action transitions similar to a
state machine. The method assumes that Thing’s state-space
is spanned by its properties. As properties can have infinite and
uncountable domains, they assume all properties to be discrete,
limiting the applicability of the method to more constrained
and limited devices. By training the model, it is capable of



generating a Digital Twin that exhibits or mimics the same
behavior as the real device.

Outside the context of the WoT, there have been other
efforts to use exchangeable data formats for automatically
generating simulation-based DTs.

Utilizing a Platform Industrie 4.0 standard called the Asset
Administration Shell (AAS), several approaches were made to
utilize the standard as an exchangeable format for simulation-
based engineering [14] and DT generation [15], using FMUs
directly to exchange simulations. While none of these ap-
proaches targets WoT or IoT, specifically, an integration of
WoT in the AAS has been proposed [16]. As such, approaches
utilizing the AAS may, in the future, utilize the TD as well.

In contrast to current related work, our approach aims to
capture the behavior of highly dynamic and complex systems
in a declarative, human- and machine-readable format, that can
be exchanged and utilized by Consumers and clients. Using
our approach, it is now possible to describe the effect of
interactions on the state of the described Thing, which was
not possible using only the TD. With the added information,
it is now possible to develop WoT Mashups that can reason
and handle statefulness more reliably or develop goal-driven
frameworks that can traverse the state chart to achieve the goal
of being in a certain state.

VII. CONCLUSION

In this paper, we introduced our novel approach Stateful-
WoT, a building block in the WoT environment that provides
a standardized behavior description, which is human- and
machine-readable, extensible, exchangeable, and built using
existing standards. Our method utilizes SCXML and Modelica
models together to describe the operational behavior of WoT
CPSs, including their physical behavior. We formally discuss
the extensions to fully realize our vision and how this is exe-
cuted using the aforementioned standards. We also introduce
extensions to the WoT TD to describe dynamic systems based
on their state charts. We then introduce our fully open-source
implementation of the proposed methodology based on node-
wot, OpenModelica, and PyFMI and evaluate it in two use
cases. In the first case, we generated a DT that mimics the
operational behavior of an industrial motor drive, ensuring
that the generated DT does not allow interactions that are not
possible based on the drive’s state. In the second use case, we
modeled a small Pantilt module attached to a Raspberry Pi
3 and compared the actual physical behavior to the model of
the generated DT. We show that the generated model mimics
the behavior of the real device to a high degree and can,
therefore, be used as a viable DT for simulation, testing,
and prediction. We discuss related work and explain that, in
contrast to current literature, our approach allows the handling
of more complex systems and scenarios due to including a
declarative description of the statefulness of Things.

Future work includes a deeper look into manageable actions
in the context of the WoT, a user-friendly tooling for our
methodology that provides a GUI for modeling WoT Things,
and utilizing the extended SCXML document alongside the

extended TD for automated Mashup generation using goal-
driven approaches.
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